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Avant-propos

Le thème choisi, à savoir "Les constantes fondamentales de la physique", nous conduit à l’étude
quantitative de trois constantes considérées comme invariantes, correspondant à des propriétés univer-
selles du monde qui nous entoure et jouant ainsi un rôle majeur en physique.

Dans ce rapport, nous détaillerons les trois expériences réalisées dans le cadre de ce thème et qui
nous ont permis de déterminer expérimentalement ces trois constantes fondamentales : la vitesse de la
lumière c, la constante de gravitation G ainsi que la constante de Planck h.

Chacun de ces trois travaux pratiques correspond à l’une des expériences qui, historiquement, a
permis la détermination de chacune de ces constantes.

La suite de ce rapport s’articule donc en trois parties, soit une par constante. Chaque partie est
ensuite découpée en sous-parties présentant systématiquement le principe de la manipulation, l’ex-
ploitation des mesures réalisées lors de cette dernière ainsi que l’étude des incertitudes associées. On
retrouve également pour chaque expérience une sous-partie dédiée aux remarques et observations sup-
plémentaires concernant la manipulation présentée (certaines remarques seront cependant réalisées
directement lors de l’exploitation des résultats/mesures si cela est plus adéquat et pertinent).

Une conclusion finale de ce thème faisant état de résumé et d’ouverture est aussi disponible en fin
de rapport (cf table des matières).

Chronologie des séances

Les constantes fondamentales de la physique Date

Vitesse de la lumière Mardi 06 Février 14h

Analyse des résultats c Mardi 13 Février 14h

Mesure de la constante de gravitation G par la méthode de Cavendish Mardi 20 Février 13h30

Analyse des résultats Cavendish Mardi 05 Mars 14h

L’effet photoélectrique : mise en évidence et détermination de h Mardi 12 Mars 14h

Analyse des résultats h Mardi 19 Mars 14h

Préparation du rapport écrit Mardi 26 Mars 14h
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Première partie

Mesure de la vitesse de la lumière par
la méthode de Foucault

Photo du montage utilisé (miroir sphérique non visible sur la photo)
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I - Mesure de la Vitesse de la Lumière par la Méthode de Foucault Université de Poitiers

1 Principe de la Manipulation - Méthode de Foucault

1.1 Description de l’Expérience
Cette expérience aura pour objectif la détermination de la vitesse de la lumière (dans l’air). Pour

cela, nous allons utiliser la méthode mise au point par Léon Foucault en 1862 à Paris lorsqu’il cherchait
à déterminer ou plutôt à mesurer la vitesse de la lumière.

Figure 1 – Schéma représentant un aller-retour suivi par un faisceau lumineux émanant du laser dans
le cas où le miroir plan ne tourne PAS (au repos)

Principe de fonctionnement du montage

On commence par allumer le laser qui envoie un faisceau au travers de deux lentilles convergentes
L1 et L2. Comme représenté sur la FIGURE 1, la particularité est ici que le système optique formé
par les 2 lentilles fait ressortir ce faisceau à l’infini (rayons parallèles comme en entrée du système).

Ce rayon lumineux rencontre alors un miroir plan qui va dévier le faisceau selon les lois de Descartes
vers un second miroir, sphérique cette fois-ci.

Ce second miroir est placé de sorte à ce que le rayon revienne "sur lui-même" ou plutôt avec la
même direction, mais dans le sens opposé. Cela est dû au fait que le rayon arrive selon une direction
qui se confond avec la normale au point d’incidence (du miroir sphérique). Le rayon revient alors dans
l’autre sens.

Cependant, tout l’intérêt de cette manipulation réside dans le fait que le miroir plan précédemment
évoqué (vers lequel revient alors le faisceau à ce stade) est mis en rotation rapide. Il s’agit en réalité
d’un miroir tournant (cf FIGURE 2). De là, pendant que le rayon faisait son aller-retour du miroir
plan au miroir sphérique, le miroir plan a eu le temps de tourner d’un angle θ.
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Ainsi, le rayon lumineux revenant sur le miroir plan est dévié d’un angle 2θ comme le veulent les
lois de Descartes. Résultat, du fait du nouvel angle pris par le miroir plan, le faisceau reviendra vers
la source avec un certain décalage ∆s′. Et c’est justement grâce à la mesure de ce décalage et en
connaissant la vitesse de rotation du moteur (i.e du miroir plan) que l’on pourra calculer la vitesse de
la lumière dans l’air de la salle.

Protocole expérimental

La manipulation consistera donc à relever/mesurer le décalage ∆s′ à l’aide du microscope de gran-
dissement et du micromètre de précision (on mesure ce décalage en alignant notre réticule avec la tache
formée par le faisceau dévié) pour différentes valeurs de vitesse de rotation ω du moteur et donc du
miroir tournant : valeurs elles-mêmes mesurées à l’aide d’un détecteur optique.

Plus précisément, on cherchera à mesurer ∆s′ pour des valeurs de ω que l’on augmentera par palier
de 100 tours.s−1 et ce de façon à couvrir un intervalle de [100, 1000] tours.s−1. Nous ne réaliserons
pas la mesure à 1500 tours.s−1 pour des raisons pratiques que nous détaillerons davantage plus loin
(le faisceau n’était tout simplement plus visible).

On effectuera donc 10 mesures dans le sens de rotation horaire et 10 mesures dans le sens anti-
horaire (sens de rotation du moteur). Nous réaliserons alors 3 séries de mesures de ce type (3 x 20
mesures) : 1 série par membre du trinôme (encore une fois, nous détaillerons et justifierons ce choix
par la suite).

Dans un second temps, on mesurera les distances D, A et B à l’aide des graduations présentent sur
le banc optique (pour A et B) et d’un mètre mesureur (pour D). Les valeurs seront ensuite consignées,
car nécessaires au calcul de c comme nous le verrons partie suivante, i.e partie 1.2.

Figure 2 – Schéma simplifié représentant un aller-retour de 2 rayons lumineux émanant du laser pour
2 positions différentes du miroir plan tournant (permettant d’illustrer l’origine du décalage ∆s′ évoqué
plus haut)
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1.2 Démonstration de l’Expression de c

Figure 3 – Schéma simplifié représentant la déviation d’un rayon réfléchi après rotation du miroir
plan tournant (et faisant figurer le décalage ∆S′ entre S et S′ au niveau du miroir sphérique)

Nous allons ici chercher à exprimer c en fonction des valeurs connues (mesurées), soit en fonction
de ω, ∆s′, A, B et D. Pour cela, on commence par noter la définition de la vitesse de rotation du
moteur (donc du miroir tournant) :

ω =
θ

∆t
(I.1)

Or, comme la distance entre le miroir tournant et le miroir sphérique est fixe et notée D, on sait
que lors de cet aller-retour, la lumière se déplaçant à une vitesse c va parcourir une distance 2D, soit :

c =
2D

∆t
(I.2)

En combinant (I.1) et (I.2), on obtient :

c =
2Dω

θ
(I.3)

De plus, avec la FIGURE 3, on peut aisément identifier un triangle tel que (approximation des
petits angles pour θ très petit, i.e simplification du DL de tan) :

tan 2θ ≈ 2θ =
∆S′

D
=⇒ θ ≈ ∆S′

2D
(I.4)

En injectant (I.4) dans (I.3), on a :

c =
4D2ω

∆S′ (I.5)

L’étape suivante consiste à utiliser la formule de grandissement d’une lentille mince. On considère
alors l’objet de L2 comme étant l’image formée sur le miroir sphérique par les rayons ascendants. Le
reflet mène à une image par L2 qui correspond à ce que l’on observe par l’oculaire du microscope
de grandissement. Sachant ça, on sait que l’objet est de taille ∆S′ et que ce dernier est situé à une
distance D + B du centre de la lentille L2. De même, l’image par L2 est de taille ∆s′ et est située à
une distance A du centre de L2. On peut alors appliquer la formule du grandissement pour L2 :

∆s′

∆S′ =
A

D +B
(I.6)

En réarrangeant cette expression on récupère :

∆S′ =
(D +B)∆s′

A
(I.7)

Il ne reste plus qu’à injecter (I.7) dans (I.5) pour finalement obtenir l’équation finale (que nous
utiliserons par la suite pour calculer c) :

c =
4AD2

D +B
× ω

∆s′
(I.8)
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2 Exploitation des Mesures
a) Acquisition des données expérimentales

On suit le protocole expérimental détaillé partie 1.1. On réalise 3 séries de 20 mesures : 10 mesures en
sens de rotation horaire et 10 autres en sens antihoraire. Chaque série de mesures étant complétement
réalisée par le même manipulateur (et 3 séries, car 3 expérimentateurs) pour éviter toute différence
d’évaluation de la position du faisceau sur une même série du fait d’éventuels défauts de vue de chacun.
On fera à terme le calcul de valeurs moyennes en considérant les 3 séries de mesures (moyenne des 3
valeurs de c obtenues avec les 3 séries).

On obtient ainsi les 3 tableaux de mesures suivants :

Figure 4 – Tableaux représentants les résultats obtenus pour les 3 séries de mesures réalisées (sens
horaire pris positif et inversement)

On peut maintenant commencer l’exploitation de ces données et on va pour cela réaliser 3 courbes,
ou plutôt droites ici (on commence par ne considérer que le nuage de points correspondant aux me-
sures). Plus précisément, on trace les graphes de ∆s′ = f(ω) disponibles à partir de la page suivante
(le premier ci-dessous, les suivants en annexe 4).
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Figure 5 – Graphe de ∆s′ = f(ω) pour la série de mesures 1 (Yoan)

On constate alors ce qui est attendu, c’est-à-dire une droite, soit une allure linéaire. Dans notre
cas, on remarque que notre ordonnée à l’origine n’est pas nulle, car la position de départ (avant mise
en rotation du moteur) n’avait pas été définie comme notre zéro en ordonnée (i.e pour ω = 0, on avait
∆s′ ̸= 0). Cela n’aura cependant pas la moindre importance pour la suite, puisque c’est la variation
de s′ qui va nous intéresser pour le calcul de c comme vu partie 1.2 (équation I.8).

Avant de poursuivre, nous allons faire apparaître 3 courbes de tendances (modèles linéaires) avec
Excel pour obtenir les équations des droites (régressions linéaires) et donc les coefficients directeurs de
ces dernières. Les résultats obtenus avec Excel (équations et tracés) apparaissent FIGURES 5, 7 et 8
(FIGURE 5 disponible ci-dessus, les autres sont elles disponibles en annexe 4, comme dit précédem-
ment).

Au vu de la précision avancée par Excel (relativement faible en l’occurrence), on a préféré effectuer
nos propres calculs d’équations de droites. Pour cela, nous avons utilisé la méthode des moindres carrés
pour établir, pour chacune des courbes, un modèle affine d’équation y = ax+ b.

On va maintenant détailler cette méthode en totalité, avant de donner les résultats numériques
associés aux séries 1 à 3 (la procédure étant bien entendu strictement la même pour chacune des séries
de 20 mesures chacune).
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b) Modélisation - Méthode des moindres carrés

On cherche donc une modélisation de la forme y = ax+ b avec :

a =
σxy

σ2
x

et b = y − ax (I.9)

où σxy est la covariance et σ2
x l’écart type de x au carré aussi appelé variance de x (y et x étant

alors les valeurs moyennes de y et x).

Ici, les xi correspondent aux valeurs de ω et les yi aux valeurs de ∆s′. En connaissant les définitions
d’écart-type, de variance et de moyenne, on peut écrire, et ce, pour chaque série de mesures (n = 20) :

x =
Σxi

20
et y =

Σyi
20

(I.10)

σx =
√
V ar(x) =

√
Σx2

i

20
− x2 (I.11)

σxy =
Σ(xi − x)(yi − y)

20
=

Σ(xiyi − xyi − xiy + xy)

20
=

Σxiyi
20

− x× y (I.12)

On va maintenant détailler les calculs pour la série 1 puis on donnera sous forme de tableau (cf
FIGURE 6), l’ensemble des résultats pour chacune des séries (la méthode étant identique pour les
séries 2 et 3). En reprenant alors les valeurs du FIGURE 4, on obtient :

x = −0, 05 tours.s−1 et y = 11, 33 mm

De plus,

Σx2
i = 7 705 613 tours2.s−2 et Σxiyi = 1 699, 26 mm.tours.s−1

D’où,

σ2
x = 385 280, 65 tours2.s−2 et σxy = 85, 53 mm.tours.s−1

Finalement, on reprend l’équation (I.9) :

a = 2, 22.10−4 mm.s.tours−1 et b = 11, 34 mm

On a donc l’équation de notre de régression (linéaire) pour la série 1 :

y = 2, 22.10−4x+ 11, 34 (I.13)

On remarque alors qu’on a gagné en précision sur le coefficient directeur de cette droite quand on
compare avec l’équation obtenue avec Excel. D’où l’intérêt d’avoir également fait les calculs à la main
puisque cela permettra l’obtention d’une valeur plus précise de c.

Comme annoncé précédemment, on ne va pas re-détailler le calcul pour les 2 séries restantes, on va
simplement synthétiser l’ensemble des résultats pour les 3 séries dans le tableau ci-dessous, i.e FIGURE
6 :
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Figure 6 – Tableau synthétisant les données associées aux 3 régressions linéaires réalisées à l’aide de
la méthode des moindres carrés pour chacune des séries de mesures

On obtient donc 3 équations de droites relativement similaires (aux imprécisions et incertitudes de
mesures près) : 

y1 = 2, 22.10−4x1 + 11, 34

y2 = 2, 12.10−4x2 + 11, 33

y3 = 2, 14.10−4x3 + 11, 33

c) Calcul de c

Pour le calcul de c, on reprend l’équation (I.8) démontrée partie 1.2. On considère alors les droites
déterminées à l’instant, plus précisément, on va s’intéresser à leurs équations.

En effet, on peut identifier le coefficient directeur ou plutôt l’inverse du coefficient directeur de
notre droite (respectivement chacune de nos 3 droites) au sein de l’équation (I.8). Il s’agit en effet du
rapport ω

∆s′ . On fait cependant attention à convertir l’ensemble de nos unités, de façon à avoir un ω
en rad.s−1 et un ∆s′ en m. De même, on convertira l’ensemble de nos valeurs mesurées de A, B et D
en m. Les valeurs de A, B et D ayant été mesurées avec la règle graduée présente sur le banc optique
pour les 2 premières et grâce à un mètre mesureur pour la dernière (D) :


A = 0, 264 m

B = 0, 496 m

D = 10, 55 m

(pour A, on a mesuré la distance entre les 2 lentilles et on a retranché la distance focale de L1.)

On notera que ces valeurs sont mesurées/données avec 3 chiffres significatifs, i.e "3 CS").

Avec les valeurs de A, B, D ainsi que de l’inverse du coefficient directeur a de chacune de nos
droites de régression, on peut exprimer et calculer c (avec a convertie en m.s.rad−1) ; c’est d’ailleurs
tout l’intérêt de la formule démontrée et reformulée ci-dessous :

c =
4AD2

D +B
× ω

∆s′
=

4AD2

D +B
× 1

a
(I.14)

Si on prend l’exemple de la série 1, on obtient :
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c1 =
4× 0, 264× 10, 552

10, 55 + 0, 496
× 2π

2, 22.10−4.10−3
= 3, 01.108 m.s−1

On fait de même pour les 2 autres séries et on trouve :


c1 = 3, 01.108 m.s−1

c2 = 3, 15.108 m.s−1

c3 = 3, 12.108 m.s−1

On va maintenant chercher à évaluer les incertitudes de mesures sur chacune des données expéri-
mentales, de façon à déterminer l’incertitude sur c via l’analyse de la propagation des erreurs.

d) Estimations des incertitudes de mesures

On commence par définir les incertitudes de mesures sur chacune des données expérimentales :

1) Sources d’incertitude sur ∆s′

On considère tout d’abord la précision constructeur du micromètre : ± 0, 005 mm (soit alors une
incertitude de ± 0.005 mm).

Ensuite, on considère la plus petite graduation présente sur le micromètre, soit une incertitude de
± 0, 005 mm (graduation au 0.01 mm).

Enfin, on considère l’extrapolation de l’oeil liée à la lecture de la graduation sur le micromètre, soit
une incertitude de ± 0.005 mm.

On obtient alors une incertitude totale de ± 0.015 mm que l’on va volontairement majorer au
centième supérieur, soit ± 0.02 mm, du fait des difficultés d’observation de la tache rouge qu’il nous
fallait aligner sur le réticule avec un maximum de précision (on remarque alors que toutes les valeurs
mesurées se retrouvent dans notre intervalle de confiance, cf barres d’erreurs sur les graphiques 5, 7 et
8).

2) Sources d’incertitude sur ω

On considère tout d’abord la précision constructeur du miroir tournant : ± 1, 0 tours.s−1 (soit une
incertitude considérée de ± 1.0 tours.s−1).

Ensuite, on regarde la plus petite graduation affichée sur l’afficheur digital, soit une incertitude de
± 0.5 tours.s−1 (graduation au tour près).

On obtient alors une incertitude totale de ± 1.5 tours.s−1.

3) Sources d’incertitudes sur A et B

On commence par considérer l’incertitude liée à la plus petite graduation présente sur la règle du
banc optique, soit une incertitude de ± 0.5 mm (graduation au 1mm près).

On pense aussi à l’incertitude liée à l’extrapolation de l’oeil lors de la lecture de la mesure sur cette
même règle : ± 0.5 mm.

On obtient alors une incertitude totale de ± 1.0 mm.
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4) Sources d’incertitude sur D

On commence par considérer l’incertitude liée à la plus petite graduation présente sur le mètre me-
sureur, soit une incertitude de ± 1.0 mm (graduation à 2mm près).

On relève également l’incertitude liée à l’extrapolation de l’oeil lors de la lecture de la dite mesure
sur le mètre mesureur : ± 1.0 mm.

Cependant, il convient ici d’identifier une toute autre source d’erreur. En effet, lors de la mesure, il
a fallu dérouler le mètre mesureur sur plus de 10 m, cela résultant en l’apparition d’une flèche (du fait
du poids du mètre). Ceci implique nécessairement une forte diminution de précision dans la mesure.
On a donc essayé de minimiser cette flèche, qui se formait à égale distance des 2 extrémités du mètre,
en plaçant quelqu’un au milieu (qui ajustait la hauteur du mètre de façon à être le plus horizontal/plan
possible). Pour autant, cela résulte en une importante erreur et donc incertitude sur la mesure de D.
De façon relativement arbitraire (erreur majorée et sur-estimée, car difficile à évaluer précisément), on
considèrera que cela résulte en une incertitude de ± 3.0 cm.

On obtient alors une incertitude totale de ± 3.2 cm.

e) Calcul de l’incertitude sur c

On récapitule l’ensemble des incertitudes considérées :


∆(∆s′) = ± 0.02 mm

∆(ω) = ± 1.5 tours.s−1

∆(A) = ∆(B) = ± 1.0 mm

∆(D) = ± 3.2 cm

On va maintenant exprimer l’incertitude sur c à partir des incertitudes de mesures identifiées ci-
dessus (on parle de l’évaluation de la propagation d’erreur). On utilise pour cela le calcul différentiel et
plus précisément la différentielle logarithmique de c (pour des incertitudes non aléatoires). On obtient
alors (en reprenant l’équation (I.14)) :

∆c = ∆(
4AD2

D +B
× 1

a
) (I.15)

On passe au ln pour calculer l’incertitude relative sur c :

ln c = ln(
4AD2

D +B
× 1

a
) = ln(

4AD2

D +B
) + ln(

1

a
)

=⇒ ln c = ln(4) + ln(A) + 2 · ln(D)− ln(D +B)− ln(a)

On ré-injecte l’expression de a :

ln c = ln(4) + ln(A) + 2 · ln(D)− ln(D +B)− ln(∆s′) + ln(ω) (I.16)

On dérive pour obtenir,

δc

c
=

δA

A
+ 2 · δD

D
− δ(D +B)

D +B
− δ(∆s′)

∆s′
+

δω

ω

δc

c
=

δA

A
+ 2 · δD

D
− δD

D +B
− δB

D +B
− δ(∆s′)

∆s′
+

δω

ω
(I.17)

On se place alors dans le cas le plus défavorable (où toutes les erreurs s’ajoutent) et on obtient
l’expression avec les incertitudes :
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∆c

|c|
=

∆A

|A|
+ 2 · ∆D

|D|
+

∆D

|D +B|
+

∆B

|D +B|
+

∆(∆s′)

|∆s′|
+

∆ω

|ω|

∆c

|c|
=

∆A

|A|
+∆D · ( 2

|D|
+

1

|D +B|
) +

∆B

|D +B|
+

∆(∆s′)

|∆s′|
+

∆ω

|ω|
(I.18)

On reprend maintenant les valeurs d’incertitudes déterminées plus tôt (prises dans les unités adé-
quates, cf équation (I.14)) et on prend pour |∆s′| la valeur moyenne de y déterminée pour la série 1
(on néglige les variations de y entre les différentes séries de mesures pour le calcul d’incertitude sur
c, car cela ne changerait de toute façon que très peu la valeur de ∆c : différence invisible aux chiffres
significatifs près) :

|∆s′| = |y| et par définition de a, |ω| = |∆s′|
|a|

=
|y|
a

(cf FIGURE 6 pour les valeurs moyennes).

On calcule alors l’incertitude relative de c (avec le a de la série 1 : encore une fois, on néglige les
écarts entre les a de chaque série au vu de leur influence sur le résultat final) :

∆c

|c|
= 1, 66%

On peut exprimer l’incertitude sur c en prenant comme valeur de référence c, la valeur moyenne de
c sur l’ensemble des 3 séries de mesures. On obtient alors :

∆c = ± 5 134 933 m.s−1

f) Conclusion de l’exploitation des données

Le résultat final est donc le suivant (moyenne des 3 séries de mesures) :

c = (3, 09 ± 0, 06) · 108 m.s−1

(on arrondit toujours l’incertitude finale à l’unité supérieure et on porte évidemment attention au
nombre de chiffres significatifs).

Connaissant aujourd’hui la vitesse de la lumière de façon bien plus précise, on peut remarquer que
la première série de mesures semble être la plus précise :

c1 = (3, 01 ± 0, 06) · 108 m.s−1

Cette série mène en effet à une valeur de c tout à fait acceptable, car la valeur connue et admise
aujourd’hui (2, 99792458.108 m.s−1) est alors bien comprise dans notre intervalle de confiance.

Les 2 autres séries s’écartent en revanche un peu trop de la valeur théoriquement attendue. On
peut peut-être justifier cela par un défaut de vue des deux autres expérimentateurs (pour qui les séries
de mesures de ∆s′ seraient légèrement décalées de la réalité par exemple) ou par un très léger décalage
du montage, bien que nous ayons fait très attention à ne pas toucher à ce dernier (ou même à la table
sur laquelle il était disposé et installé).
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3 Remarques et Observations sur la Manipulation
Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-

pulation mise en oeuvre.

• Tout d’abord, nous avons choisi de réaliser la manipulation dans le noir de façon à mieux vi-
sualiser le faisceau et donc la tâche que nous cherchions à aligner sur le réticule pour mesurer
le décalage ∆s′. En effet, une meilleure vision induit une meilleure précision dans la mesure.

• On a remarqué qu’en se concentrant sur la tâche, on la distinguait de moins en moins bien au fur
et à mesure que notre oeil s’habituait à la luminosité de l’image observée par l’intermédiaire de
l’oculaire du microscope de grandissement. Résultat, au bout d’environ 1-2 secondes, il devenait
difficile d’identifier la tache rouge formée par le laser. Pour palier à ce problème, nous alternions
un regard dans l’oculaire de 2 secondes (vision de près) avec un regard autour de nous (vision
de loin) de façon à ne pas laisser notre oeil s’habituer à la luminosité de l’oculaire. De là, on
pouvait mieux distinguer le faisceau et donc mieux l’aligner sur le réticule.

• Il existait également un autre facteur qui induisait une mauvaise visibilité du faisceau. En effet,
nous avons constaté que plus la vitesse de rotation du miroir tournant était importante, moins
la tache à aligner avec le réticule était visible. Ceci peut s’expliquer par la dispersion de la
lumière dans la salle du fait de présence de poussière dans l’air par exemple. Une augmentation
de la vitesse de rotation du miroir limitant alors la "quantité de lumière réfléchie" ou plutôt
l’intensité lumineuse du faisceau réfléchi.

• Une bonne illustration de ce dernier point est d’ailleurs le fait que nous n’avons pas pu réaliser
la mesure à 1500 tours.s−1, car le faisceau n’était plus discernable/visible. On ne pouvait ainsi
pas mesurer ∆s′ (impossible de placer la tache alors non visible sur le réticule).

• Une ultime remarque que nous pourrions faire concernerait l’amélioration de cette manipula-
tion. On peut en effet remarquer avec l’équation (I.18) qu’augmenter la distance D pourrait par
exemple permettre une meilleure précision (on diminuerait ainsi l’incertitude relative sur cette
mesure). De plus, l’incertitude sur D ayant un poids considérable dans celle de c (elle représente
plus de la moitié de l’incertitude sur c : sur les 1,66 % d’incertitude relative, 0,9 % proviennent
directement de l’incertitude sur D), il serait bon de trouver un moyen/outil plus précis pour
mesurer la distance D (mesure laser par exemple : méthode qui nécessite de connaître c, i.e on
tourne en rond).
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4 Annexe

Figure 7 – Graphe de ∆s′ = f(ω) pour la série de mesures 2 (Arnaud)

Figure 8 – Graphe de ∆s′ = f(ω) pour la série de mesures 3 (Ewan)
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Deuxième partie

Détermination de la constante de
gravitation à l’aide de la balance de

Cavendish

Photo du montage utilisé (tableau mural où se réfléchit le laser non visible sur la photo)
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1 Principe de la Manipulation - Balance de Cavendish

1.1 Description de l’Expérience
L’expérience de Cavendish est une expérience historique de la physique qui a initialement permis

d’estimer la masse de la Terre.
Cette expérience porte le nom de son inventeur, le physicien britannique Henry Cavendish qui a

lui-même réalisé cette expérience à la fin du XVIIIème siècle à l’aide d’une balance de torsion, la bien
connue balance de Cavendish.

Il faut cependant noter qu’à l’époque, Cavendish s’intéressait à la masse de la Terre et non à la
constante de gravitation. La méthode qui a permis de déterminer G a en réalité été développée au
XIXème siècle par Charles Vernon (entre autres), mais elle est tout de même appelée "méthode de
Cavendish".

Dans ce TP, on s’intéressera d’abord à la constante G et seulement ensuite à la masse de la Terre
(et celle du Soleil).

Figure 9 – Schéma du montage expérimental incluant le dispositif optique (laser, miroir et écran)

Principe de fonctionnement du montage

Le montage (voir FIGURE 9) se compose simplement d’un pendule de torsion où une barre appelée
fléau est suspendue au fil de torsion. Une masse est présente à chaque extrémité du fléau et elles sont
ainsi séparées d’une distance d. On dispose également d’un laser qui nous permettra, via des mesures de
déflexions (et donc d’angles de déviation du pendule), de déterminer expérimentalement la constante
de gravitation G.

Comme nous allons le voir dans l’équation du mouvement (partie 1.2), on va pouvoir déterminer G
en établissant l’équilibre du système : équilibre mettant en jeu les forces de torsion du fil et d’attraction
gravitationnelle (+ frottements avec l’air). En écartant le système de sa position d’équilibre, on va en
effet observer des oscillations amorties (dues aux frottements avec l’air) qui vont progressivement se
resserrer autour de la position d’équilibre (à terme, le système retrouvera sa position d’équilibre). La
prise en compte de la force d’attraction gravitationnelle va se faire à l’aide des 2 masses présentent
sur le fléau qui seront alors soumises au moment de torsion qui provient des forces de gravitation
(appliquées à chacune des masses) : cf partie 1.2.
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Pour toute la suite du TP, on va définir divers paramètres que nous serons amenés à utiliser :

- d : la demi-longueur du fléau (5 cm) ;
- m : la masse des petites sphères en plomb (15 g) ;
- I : le moment d’inertie de l’équipage ;
- C : la constante de torsion du fil (de l’ordre de 8, 5.10−9 Nm.rad−1) ;
- f : le facteur de résistance de l’air à la torsion de la balance ;
- M : la masse des grosses sphères en plomb (1,514 kg) ;
- σ : la distance initiale entre la grosse sphère et la petite sphère (5 cm) ;
- s : le déplacement de la petite sphère fixée au fléau sous l’action du couple de gravitation ;
- α

2 : l’angle de déviation du fléau soumis à l’attraction des grosses sphères ;
- L0 : la distance prise selon la direction normale de la balance (donc du miroir) à l’écran (6,57 m) ;
- X0 : la distance mesurée sur le mur entre le point d’impact de la normale à la balance et la

position du spot S0 ;
- ∆S : la déviation du spot laser sur l’écran d’une position d’équilibre à l’autre (position I et II des

grosses sphères), ∆S = S1 − S2 ;

Protocole expérimental

On note tout d’abord qu’à notre arrivée dans la salle, la balance était restée au repos suffisamment
longtemps pour que le pendule soit à sa position d’équilibre (ce que nous vérifierons d’ailleurs plus
tard, cf partie 2.d). Le "point zéro" avait également été correctement calibré (fil tendu et fléau centré
et parallèle aux parois de verre).

On commence par déplacer le fléau de façon à initier les oscillations (un expérimentateur balance le
bras auquel les masses sont rattachées à t = 0 s). On notera alors notre premier point de mesure (point
numéro 1 qui figure sur le jeu de données). Ce point servira ensuite de référence pour les mesures de ∆S.

Pour réaliser les points de mesures (des déflexions), on utilise un faisceau laser qui se réfléchit avec
une incidence relativement faible sur un petit miroir fixé sur le fil de torsion (cf FIGURE 10). De cette
façon, une rotation du fil de torsion entraine une rotation de miroir et ainsi une déflexion du faisceau
vers le mur situé en face (faisceau réfléchi). C’est justement en plaçant un écran papier sur ce mur que
l’on pourra relever la position du faisceau dévié toutes les 30 secondes. On pourra ainsi, en prenant
notre premier point comme référence, mesurer les ∆S.
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Figure 10 – Vue de dessus du dispositif avec trajets du faisceau laser incident et des faisceaux réfléchis
sur le miroir après déplacement du fléau de la position 1 à 2

Un second expérimentateur placé proche du mur va donc devoir relever la position du laser à
intervalle régulier de 30 secondes : au signal d’un autre expérimentateur possédant un chronomètre
(ce dernier prévient l’autre 5 secondes avant de façon à ce que tout le monde soit prêt une fois arrivé
à 30 secondes). L’idée est ensuite de relever une centaine de positions du faisceau (environ 100 mesures).

On peut noter qu’en réalité, un second faisceau est visible plus bas, mais ce dernier n’importe
pas dans les mesures : il s’agit du faisceau réfléchi par la surface vitrée du carter (il ne servira que de
contrôle pour vérifier que l’angle d’incidence du laser est resté constant tout au long de la manipulation).

Sachant qu’une rotation du miroir d’un angle α engendre une réflexion du faisceau d’un angle 2α,
on obtient un lien entre la mesure de ∆S sur notre feuille de pointage et l’angle 2α associé. Comme on
le voit FIGURE 10, l’approximation des petits angles donne : ∆S ≈ 2αL =⇒ 2α = ∆S

L (on verra par
la suite qu’il nous faut cependant considérer un coefficient de compensation d’erreur de parallaxe).

1.2 Equation du mouvement
On va ici établir l’équation du mouvement du fléau que l’on va évidemment lier au déplacement

∆S mesuré sur notre feuille de pointage.
On commence par écrire le théorème du moment cinétique (où F⃗ est la force de gravitation) :

dL⃗

dt
= r⃗ ∧ F⃗ = M⃗ (II.1)

On va alors comptabiliser et expliciter 3 termes de couple :

- le couple de torsion lié aux forces d’attraction s’exerçant entre les 2 masses ;
- le couple de torsion du fil (C) ;
- le couple de frottement dû aux frottements entre le dispositif et l’air.

On notera également α
2 l’angle de déviation du fléau (en prenant comme référence la position

médiane du fléau dans le cas où les 2 masses seraient absentes).

dL

dt
= 2F · d− C · α

2
− f ·

d(α2 )

dt
(II.2)
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On exprime alors F = GMm
s2 et L = Iω = 2md2 · d(α

2 )

dt où I est le moment d’inertie du dispositif
rattaché au fil de torsion (dispositif mobile par rapport au support). On notera que l’on approxime
la valeur de I en se plaçant dans le cadre de l’approximation de masses ponctuelles (question de
simplification des calculs) :

I ·
d2(α2 )

dt2
= 2

GMm

s2
· d− C · α

2
− f ·

d(α2 )

dt
(II.3)

On multiplie alors l’ensemble de l’équation précédente par 2
I et on la réécrit de la façon suivante

(on écrit aussi s comme une fonction de α car c’est bien le cas dans la réalité) :

d2(α)

dt2
+

f

I
· d(α)

dt
+

C

I
· α− 4G

I

Mmd

s(α)2
= 0 (II.4)

Figure 11 – Représentation schématique de la rotation du fléau d’un angle α
2 sous l’action des forces

de gravitation entre les 2 masses. On fait figurer (en grisé) la position médiane du fléau précédemment
évoquée (position de référence α = 0)

En se plaçant dans l’approximation des petits angles et en utilisant les notations introduites partie
1.1, la FIGURE 11 nous permet d’écrire :

σ − s =
αd

2
=⇒ s = σ − αd

2
(II.5)

On va alors utiliser le fait que les déplacements du fléau sont relativement faibles par rapport à la
distance d =⇒ α

2 d ≪ σ.
On peut donc écrire :

1

s2
=

1

(σ − αd
2 )2

=
1

σ2 · (1− αd
2σ )

2
≈ 1

σ2
·
(
1 +

αd

σ

)
(II.6)

On injecte alors cette expression dans l’équation (II.4) :

d2(α)

dt2
+

f

I
· d(α)

dt
+

C

I
· α− 4G

I

Mmd

σ2
·
(
1 +

αd

σ

)
= 0 (II.7)

Comme I = 2md2, on peut légèrement simplifier cette expression :
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d2(α)

dt2
+

f

I
· d(α)

dt
+

C

I
· α− 2G

d

M

σ2
·
(
1 +

αd

σ

)
= 0 (II.8)

On factorise alors par α :

d2(α)

dt2
+

f

I
· d(α)

dt
+

(
C

I
− 2GM

σ3

)
α =

2GM

dσ2
(II.9)

On reconnait une équation différentielle du second ordre avec second membre (et de variable α) :

α̈+ 2λα̇+ ω2
0α = ω2

0ε (II.10)

avec : λ =
f

2I
ω2
0 =

(
C

I
− 2GM

σ3

)
ω2
0ε =

2GM

dσ2

On sait que la solution de ce type d’équation différentielle dépend du signe du discriminant de
son équation caractéristique : ∆ = λ2 − ω2

0 . Dans notre cas, la balance de Cavendish (i.e le couple
résistant, la constante de torsion C et le moment d’inertie I) est ajustée de façon à permettre un régime
pseudo-périodique (∆ < 0). Cela se vérifiera expérimentalement par la suite puisque l’on observera des
oscillations amorties.

La solution de cette équation est donc de la forme :

α = Ae−λt cos (ωt+ ϕ) + ε avec ω2 = ω2
0 − λ2 et ε =

2GM

ω2
0σ

2d
(II.11)

2 Exploitation des Mesures
a) Acquisition des données expérimentales

La manipulation n’ayant pas pu être réalisée du fait qu’elle avait été rendue inopérante quelques
jours auparavant, nous avons récupéré le jeu de 85 mesures de ∆S réalisé par un ancien groupe d’élèves
(il s’agit de la feuille de pointage). Le protocole mis en oeuvre pour l’obtention de cet ensemble de
données étant bien entendu celui décrit partie 1.1. Les mesures des ∆S seront donc réalisées à l’aide
d’une règle (cf plus loin pour le calcul d’incertitude associé) en prenant comme position de référence
le premier point relevé (on mesure ensuite les écarts entre ce point de référence et chacun des autres
points : on obtient ainsi les valeurs de ∆S pour chaque valeur de t).

Le jeu de données était donc le suivant :

Figure 12 – Jeu de données/Feuille de pointage appartenant à un autre groupe de TP et ayant été
utilisé pour la réalisation du TP (car balance de Cavendish inopérante)

Le tableau de mesures faisant figurer les 85 valeurs de ∆S pour chaque valeur de t étant particu-
lièrement long, il ne figurera pas ici (pas dans cette partie). Cependant, il est disponible en annexe :
FIGURE 18.
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b) Modélisation avec Latis Pro

On va maintenant réaliser plusieurs courbes ainsi qu’une modélisation en utilisant le logiciel Latis
Pro.

Premièrement, on va tracer ∆S = f(t) (on reproduit le tableau 17, i.e la FIGURE 18, dans le
tableur de LatisPro). On obtient donc :

Figure 13 – Courbe de ∆S = f(t) obtenue sur Latis Pro avec le tableau représenté FIGURE 18

On va ensuite utiliser la relation suivante (relation précédemment évoquée dans le protocole expéri-
mental) que l’on rentrera dans la feuille de calcul de LatisPro (on se place dans le cas de l’approximation
des petits angles) :

2α =
∆S

L0
· kP ⇐⇒ α =

∆S

2L0
· kP (II.12)

Le terme kP correspond à la correction de l’erreur de parallaxe (le laser incident faisant un angle
non nul par rapport à la normale du miroir, il y a nécessité de corriger cet écart/erreur).

On peut assez facilement exprimer ce coefficient kP et retrouver cette expression de α avec quelques
considérations géométriques (cf FIGURE 14).
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Figure 14 – Schéma en vue de dessus et trajets optiques du faisceau laser dans différentes positions
du bras de la balance

L’approximation des petits angles donne :

tan 2α ≈ 2α =
∆S′

L
(II.13)

Or,

∆S′ = ∆S · cos i = ∆S · L0

L
(II.14)

D’où,

2α =
∆S · L0

L2
(II.15)

Le théorème de Pythagore donnant enfin L2 = L2
0 +X2

0 , on obtient :

2α =
∆S · L0

L2
0 +X2

0

=
∆S

L0
· kP avec kP =

L2
0

L2
0 +X2

0

(II.16)

En récupérant les valeurs de X0 et L0 du groupe ayant réalisé le TP, on peut finalement calculer
kP : 

L0 = 6, 57 m

X0 = 0, 90 m

kP = 0, 9816 ≈ 0, 98

On peut ainsi tracer la courbe de α = f(t) en reprenant l’équation (II.12) :
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Figure 15 – Courbe de α = f(t) obtenue sur Latis Pro avec l’équation (II.12) avec α en radians bien
entendu (LatisPro ne voulait visiblement pas le représenter en ordonnées)

Figure 16 – Paramètres de modélisation calculés par LatisPro pour la modélisation en cosinus amorti
de α(t) (cf plus loin pour la justification des incertitudes considérées)
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On utilise alors LatisPro pour établir une modélisation en cosinus amorti (cf FIGURE 15 pour
rendu) pour α(t) (cf expression attendue de α(t) partie 1.2). LatisPro renvoie alors les paramètres de
modélisation avec leurs incertitudes (cf partie 2.f.2 et 2.f.3 pour l’estimation de l’incertitude sur α et t) :

Par identification entre les différents paramètres de modélisation et grâce à l’équation de α(t)
(trouvée partie 1.2) et des expressions des paramètres présents dans cette équation, on peut calculer
le terme d’amortissement λ (on l’identifie directement dans l’exponentielle de la solution/modélisation
trouvée par LatisPro) :

λ = 64, 702.10−3 · 2 · π · 1, 513.10−3 ≈ 6, 151.10−4 s−1

De plus, comme on approxime les masses à des masses ponctuelles, on a I = 2md2. D’où,

f = 2Iλ ≈ 9, 226.10−8 kg.m2.s−1

On peut de la même façon obtenir ω par son identification dans le terme en cosinus :

ω = 2 · π · 1, 513.10−3 ≈ 9, 506.10−3 rad.s−1

On peut ainsi obtenir la pulsation propre ω0 et la fréquence propre f0 associée :ω0 =
√
ω2 + λ2 = 9, 526.10−3 rad.s−1

f0 = ω0

2π = 1, 516.10−3 s−1 (ou Hz)

On remarque alors que ω ≈ ω0. L’erreur relative vaut en effet :

|ω − ω0|
ω

≈ 0, 21 %

Au vu de la très faible valeur de l’erreur relative, on se permettra par la suite de confondre, ou
plutôt d’assimiler, la pseudo-période à la période propre du fléau (conséquence : la fréquence f associée
à ω, soit F0 sur LatisPro, est quasiment égale à la valeur de la fréquence propre f0).

On peut enfin déterminer la valeur de l’angle à l’équilibre αe = ε ou Y0 sur LatisPro. On identifie :

αe = ε = Y0 = 15, 946.10−3 rad

c) Calcul de G et C

On dispose maintenant de toutes les valeurs nécessaires au calcul de la constante de gravitation G :

ε =
2GM

ω2
0σ

2d
⇐⇒ G =

ω2
0σ

2εd

2M
(II.17)

On doit cependant corriger cette valeur d’un facteur kM2 permettant de considérer le moment de
la force d’attraction entre les 2 masses m et M du dispositif. La valeur donnée dans notre cas était :
kM2 = 1, 083. On a alors :

G = kM2 ·
ω2
0σ

2εd

2M
(II.18)

On peut ainsi réaliser l’application numérique et obtenir notre valeur de G :

G ≈ 6, 471.10−11 m3.kg−1.s−2 (II.19)

On obtient donc une valeur relativement proche de la valeur actuellement admise de G (Gth =
6, 6742.10−11 m3.kg−1.s−2).
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Plus précisément, on obtient une erreur relative de :

|G−Gth|
Gth

≈ 3, 04 %

On passe maintenant au calcul de la constante de torsion C. On sait que :

ω2
0 =

C

I
− 2GM

σ3
=⇒ C = I ·

(
ω2
0 +

2GM

σ3

)
(II.20)

On obtient ainsi :

C ≈ 6, 923.10−9 Nm.rad−1

La valeur constructeur étant de Cconst = 8, 5.10−9 Nm.rad−1, on observe alors une erreur relative
de :

|C − Cconst|
Cconst

≈ 18.6 %

On peut alors signaler que l’erreur commise est assez importante. Ces écarts peuvent se justifier de
différentes façons, d’une part du fait de l’usure du fil (la valeur constructeur était probablement vraie
en sortie d’usine, mais plus maintenant : avec le temps le fil se dégrade), mais aussi de par le cumul
(et donc la propagation) des incertitudes de mesures.

d) Estimation de la distance entre les masses M et m à l’équilibre

On note s(α) = s(αe) = b et on reprend l’équation (II.4). On peut alors exprimer αe (à l’équilibre
donc) comme suit :

C

I
· αe −

4G

I
· Mmd

s(αe)2
= 0 ⇐⇒ αe =

4G

C
· Mmd

b2
(II.21)

Sachant que I = 2md2 ⇐⇒ m = I
2d2 , on peut réécrire :

αe =
2 ·GMI

Cd
· 1

b2
(II.22)

Si on reprend maintenant les expressions de αe et de ω0 établies pour l’équation (II.10), on a :

αe =
2GM

ω2
0σ

2d
=

2GM(
C
I − 2GM

σ3

)
σ2d

=
I
C · 2GM

I
C ·

(
C
I − 2GM

σ3

)
σ2d

=
2 ·GMI

Cd
· 1(

1− I
C · 2GM

σ3

)
σ2

(II.23)

On identifie alors le b de l’équation (II.22) avec le dénominateur de l’équation (II.23) pour obtenir :

b = σ ·
√

1− I

C
· 2GM

σ3
(II.24)

On peut ainsi calculer la valeur de b = s(αe) :

b = 4, 957.10−2 m = 4, 957 cm

On note alors que σ ≈ b avec un écart relatif de seulement :

|b− σ|
σ

= 0, 86 %

On peut alors remarquer que la distance initiale entre les sphères est en fait la distance à l’équilibre
entre ces 2 dernières. Autrement dit, à t = 0 s, les sphères étaient à l’équilibre (sans surprise).
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e) Pesée des astres

On va ici chercher à déterminer, à l’aide de nos mesures, la masse de la terre MT , puis à l’aide de la
3ème loi de Kepler, celle du Soleil MS .

On reprend tout d’abord l’équation (II.22) dans laquelle on exprime I = 2md2 (on la réarrange
également légèrement au passage) :

Cαe

4d
=

GMm

b2
(II.25)

L’idée de Cavendish que nous allons remettre en oeuvre ici consiste à comparer (mathématiquement,
à faire le rapport) la force F à celle exercée par la Terre sur la masse m (force de gravitation). Autrement
dit, on cherche à comparer F avec le poids de la masse m : P = mg.

Le rapport des 2 forces donne :

F

mg
=

Cαe

4mgd
=

GMm
b2

GMTm
R2

T

=
GMm

b2
· R2

T

GMTm
(II.26)

Que l’on peut simplifier comme suit :

Cαe

4mgd
=

MR2
T

MT b2
(II.27)

On peut alors exprimer la masse de la Terre :

MT =
4mgMR2

T d

Cαeb2
(II.28)

On prendra alors g = 9, 81 m.s−2 et RT = 6, 37.106 m (on rappelle également que αe = ε =
15, 946.10−3 rad) :

MT ≈ 6, 55.1024 kg

A noter qu’on a choisi de prendre la valeur de C calculée à partir des valeurs expérimentales (la
valeur de MT calculée avec la constante constructeur est très légèrement plus éloignée de la valeur
théorique).

La valeur théorique (admise aujourd’hui) étant de MT,th = 5, 972.1024 kg, on a un écart relatif de :

|MT −MT,th|
MT,th

≈ 9, 68 %

Ce qui reste significatif, mais non surprenant au vu des incertitudes de mesures que l’on va estimer
plus loin.

En assimilant la Terre à une sphère de rayon RT , on peut aussi calculer sa masse volumique ρT :

ρT =
MT

4
3πR

3
T

= 6, 05.103 kg.m−3 = 6, 05 g.cm−3 (II.29)

Connaissant la valeur théorique ρT,th = 5, 517 g.cm−3, on obtient un écart relatif de :

|ρT − ρT,th|
ρT,th

≈ 9, 66 %

A 10% près, on a donc une valeur de masse volumique voisine de la valeur admise aujourd’hui.

Passons maintenant au calcul de la masse du Soleil.
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On va appliquer la 3ème loi de Kepler qui s’écrit ici :

a3T
T 2

=
G(MS +MT )

4π2
(II.30)

où T est la période de révolution de la Terre autour du Soleil et aT le demi grand axe de la trajec-
toire elliptique (ici assimilé au rayon d’une trajectoire circulaire).

A noter que comme il s’agit d’un système planète/étoile, on pourrait négliger la masse de la Terre
devant celle du Soleil. Mais mettons-nous à la place de Cavendish qui ne connaissait pas encore la
masse du Soleil (c’est justement le but de ce calcul !). Il ne pouvait pas encore faire l’hypothèse de
négliger quelque chose qu’il ne connait pas devant la masse de la Terre. Dans un souci de complétude,
on fera les 2 calculs, l’un en négligeant la masse de la Terre devant celle du Soleil, l’autre sans faire
cette approximation. On comparera ainsi les 2 résultats.

MS =
4π2a3T
GT 2

−MT ou (si MT négligé devant MS) MS =
4π2a3T
GT 2

(II.31)

On prend alors aT = 1, 5.1011 m et T = 365, 24 jours = 3, 16.107 s, on obtient ainsi la même
valeur avec ou sans l’approximation sur la masse de la Terre (après arrondi au bon nombre de chiffres
significatifs) :

MS = 2, 1.1030 kg

La valeur aujourd’hui admise étant de MS,th = 1, 989.1030 kg, on observe un écart relatif tout à
fait acceptable de :

|MS −MS,th|
MS,th

≈ 3, 6 %

f) Estimations des incertitudes de mesures

On commence par définir les incertitudes de mesures sur chacune des données expérimentales :

1) Sources d’incertitude sur ∆S

On considère tout d’abord la plus petite graduation présente sur la règle graduée (utilisée pour la
mesure de ∆S) : ± 1 mm (on considère alors une incertitude de ± 0.5 mm).

De plus, on considère l’extrapolation de l’oeil liée à la lecture de la graduation sur la règle, soit une
incertitude supplémentaire de ± 0.5 mm.

On obtient alors une incertitude totale de ± 1 mm.

2) Sources d’incertitude sur t

La principale source d’erreur sur cette mesure est le temps de réaction de l’expérimentateur. En réa-
lité, il s’agit même du cumul de 2 temps de réaction : celui de l’expérimentateur qui a le chronomètre
en main et celui du second manipulateur qui relève la position du faisceau sur la feuille de pointage ou
écran papier. Le temps de réaction moyen de l’être humain étant difficile à évaluer dans le contexte de
l’expérimentation, on considèrera un temps moyen de réaction de 1 seconde que l’on majorera volon-
tairement à 2 secondes (vu les difficultés d’estimation de cette valeur) pour chaque expérimentateur :
± 4 s.

On va cependant noter quelque chose d’important ici. Le temps de réaction ou plutôt le temps de
réponse/action (c’est ça qui nous intéresse ici) correspond à un paramètre très flou, on devrait en effet
en distinguer plusieurs types. En particulier, le temps de réponse pour la lecture d’un chronomètre est
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très différent du temps de réponse pour l’écriture à la main. En médecine, on distingue par exemple les
temps de réaction simple, semi-complexe et complexe (correspondant à différents types de stimulations
et réponses). Par exemple, pour l’expérimentateur annonçant le temps affiché au chronomètre, le temps
de réaction correspondant serait en moyenne de 168 ms ! Bien entendu, il faut aussi considérer le temps
d’action (pour annoncer oralement "top") ce qui amène la durée à considérer à environ 400-600 ms
(considérer 1 seconde est donc déjà très largement surestimé). En opposition à cela, le temps d’action
de l’expérimentateur relevant la position du faisceau est lui bien supérieur et atteint facilement 1, voire
2 secondes (2 au très grand maximum !). Il est donc essentiel de signifier que ce que l’on considère ici
est bien davantage le temps d’action/réponse que le temps de réaction qui est lui de 168ms pour chacun
des manipulateurs.

On comptera donc 4 secondes d’incertitude sur t (ce qui est déjà une très large majoration/surestimation
de la réalité : environ 2 secondes si l’on se réfère aux sources médicales) : Incertitude considérée : ± 4 s
(mieux vaut avoir une incertitude surestimée que l’inverse, d’où ce choix).

A noter également que c’est donc cette valeur de ∆t qui a été renseigné sur LatisPro (cf FIGURE
16).

3) Calcul d’incertitudes sur kP et α

On commence par rappeler que :

α =
∆S

2L0
· kP et kP =

L2
0

L2
0 +X2

0

On calcule alors l’incertitude sur kP :

ln kP = 2 lnL0 − ln (L2
0 +X2

0 ) (II.32)

On dérive pour obtenir,

δkP
kP

= 2
δL0

L0
− δ(L2

0 +X2
0 )

L2
0 +X2

0

δkP
kP

= 2
δL0

L0
− δL2

0

L2
0 +X2

0

− δX2
0

L2
0 +X2

0

(II.33)

On se place alors dans le cas le plus défavorable (où toutes les erreurs s’ajoutent) et on obtient
l’expression avec les incertitudes :

∆kP
|kP |

= 2
∆L0

|L0|
+

∆L2
0

|L2
0 +X2

0 |
+

∆X2
0

|L2
0 +X2

0 |

∆kP
|kP |

=
2∆L0

|L0|
+

2∆L0 · |L0|
|L2

0 +X2
0 |

+
2∆X0 · |X0|
|L2

0 +X2
0 |

(II.34)

En reprenant les valeurs de L0 et X0 et en considérant les incertitudes fournies (le TP n’ayant pas
pu être réalisé, toutes ces données nous ont été fournies par notre professeur : issues d’un autre groupe
de TP), on a : 

∆L0 = 0, 01 m

∆X0 = 0, 1 m

∆kP = 9, 92.10−3

(on a considéré des incertitudes sur X0 et L0 telles que correspondantes à des mesures réalisées à
la règle graduée, respectivement au dm et au cm : on va de toute façon voir que l’incertitude sur kP
n’aura que peu d’influence sur celle de α).

Calculons maintenant l’incertitude sur α :
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α =
∆S

2L0
· kP =⇒ lnα = ln∆S + ln kP − ln 2L0 (II.35)

On dérive et on obtient :

δα

α
=

δ(∆S)

∆S
+

δkP
kP

− δ(2L0)

2L0
(II.36)

Comme pour kP , on se place alors dans le cas le plus défavorable (où toutes les erreurs s’ajoutent)
et on obtient l’expression avec les incertitudes :

∆α

|α|
=

∆(∆S)

|∆S|
+

∆kP
|kP |

+
∆(2L0)

|2L0|

∆α

|α|
=

∆(∆S)

|∆S|
+

∆kP
|kP |

+
∆L0

|L0|
(II.37)

On prend alors la valeur moyenne de α et ∆S (obtenue avec LatisPro) pour le calcul d’incertitude :

∆α = |α| ·
(
∆(∆S)

|∆S|
+

∆kP
|kP |

+
∆L0

|L0|

)
(II.38)

On calcule ainsi l’incertitude sur α :

∆α = 2, 12.10−4 rad

C’est bien cette valeur que l’on rentrera dans LatisPro pour que le logiciel calcule/estime les incer-
titudes sur les paramètres de modélisation.

Notons que comme on dispose d’un large échantillon de valeurs de α (85 valeurs), on peut évaluer
l’incertitude sur la valeur moyenne comme suit :

∆α =
∆α√
85

= 2, 30.10−5 rad

Toutes les autres incertitudes associées aux paramètres de modélisation sont données/estimées par
LatisPro, directement à partir des incertitudes sur α et t que nous venons d’établir. Celles sur G et
C font l’objet de la partie suivante et celles associées à la pesée des astres feront l’objet d’une partie
ultérieure.

g) Calcul des incertitudes sur G et C

On va maintenant s’intéresser au calcul des incertitudes sur G et C. Commençons donc par l’incer-
titude sur G. Pour cela, on utilise comme d’habitude la différentielle logarithmique (c’est la méthode
qu’on a toujours utilisée jusqu’à lors, y compris dans la partie I). On reprend l’équation II.18 (on
compose avec ln) :

lnG = ln (1, 083) + 2 lnω0 + ln d+ 2 lnσ + ln ε− ln 2− lnM (II.39)

On dérive pour obtenir,

δG

G
= 2

δω0

ω0
+

δd

d
+ 2

δσ

σ
+

δε

ε
− δM

M
(II.40)

On se place dans le cas le plus défavorable (où toutes les erreurs s’ajoutent) et on obtient :

∆G

|G|
=

2∆ω0

|ω0|
+

∆d

|d|
+

2∆σ

|σ|
+

∆ε

|ε|
+

∆M

|M |
(II.41)

Pour les valeurs d’incertitudes sur d, σ et M , on les détermine à partir de la précision avec laquelle
ces paramètres sont donnés (à défaut de les avoir mesurés nous-même). On considère que d et σ ont
été mesuré à la règle graduée au mm (on considère alors les mêmes sources d’incertitudes que pour
∆S). M est supposée mesurée au gramme près, donc on a :
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

∆d = 0, 001 m

∆σ = 0, 001 m

∆M = 0, 001 kg

∆ω0 = 2, 2.10−6 rad.s−1

∆ε = 1, 962.10−5 rad

Les 2 dernières valeurs d’incertitudes sont directement données/estimées par LatisPro : on rappelle
qu’au vu de l’écart entre ω et ω0, on considère que ces derniers sont égaux.

De là, l’incertitude relative sur G est :

∆G

|G|
=

2 · 2, 2.10−6

9, 526.10−3
+

0, 001

5.10−2
+

2 · 0, 001
5.10−2

+
1, 962.10−5

15, 946.10−3
+

0.001

1, 514
= 6, 24 %

Notons ici que sur les 6,24 % d’incertitude relative, 6,04 % sont uniquement dus à la contribution
de d, σ et αe. Cela signifie que les incertitudes sur ω0 et M n’influent que très peu sur celle de G.

En reprenant la valeur de G calculée partie 2.c, on obtient l’incertitude sur G :

∆G = 4, 038.10−12 m3.kg−1.s−2

On a ainsi :

G = (6, 471± 0, 404) · 10−11 m3.kg−1.s−2

Remarquons que la valeur théoriquement attendue est bien dans notre intervalle de confiance (i.e
Gth ∈ [G−∆G,G+∆G]).

Calculons maintenant de façon analogue l’incertitude sur la constante de torsion C.
On repart de l’équation II.20 et on obtient finalement (le calcul n’est pas re-détaillé à nouveau, il s’agit
encore et toujours de la même méthode de calcul) :

∆C

|C|
=

∆I

|I|
+

2∆ω0

|ω0|
+

(
∆G

|G|
+

∆M

|M |
+

3∆σ

|σ|

)
(II.42)

Que l’on peut réécrire en décomposant I en fonction de m et d :

∆C

|C|
=

(
∆m

|m|
+

2∆d

|d|

)
+

2∆ω0

|ω0|
+

(
∆G

|G|
+

∆M

|M |
+

3∆σ

|σ|

)
(II.43)

En prenant ∆m = 1.10−6 kg (on suppose que la masse m a été pesée avec une précision au mg) :

∆C

|C|
≈ 16, 36 % =⇒ ∆C = ± 1, 133 Nm.rad−1

Ce qui est énorme, mais pas surprenant puisque le calcul de C nécessite la prise en compte de
quasiment la totalité des incertitudes existant dans le cadre de cette manipulation, y compris celle
déjà calculée de G (qui repose elle-même sur un grand nombre de paramètres expérimentaux possé-
dant une incertitude de mesure). Remarquons qu’outre G, les incertitudes sur d et σ ont une très forte
contribution dans celle de C.

Il y a cependant une remarque importante à faire ici. Pour tous les calculs d’incertitudes, on a
jusqu’ici considéré le cas le plus défavorable où toutes les incertitudes s’ajoutaient. En réalité, il est
important de comprendre que certaines incertitudes peuvent se compenser, ce qui n’a donc pas été
pris en compte ici. La valeur ainsi calculée correspond donc à une majoration de l’incertitude réelle.
On peut aisément imaginer que l’incertitude sur G ne va directement s’ajouter aux autres incertitudes
sans la moindre compensation d’erreur (attention ce n’est qu’hypothétique).

Notons cependant que la valeur théorique n’est pas dans notre intervalle de confiance (de peu) :
on peut donc supposer que l’usure du fil de torsion y est pour quelque chose (le fil s’est dégradé et n’a
plus la même constante de torsion C qu’en sortie d’usine).
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h) Calcul des incertitudes sur MT et MS

On va maintenant calculer les incertitudes sur MT et MS .

Commençons par MT . On reprend alors l’équation (II.28) et on utilise la différentielle logarithmique.
On ne détaille plus le calcul, il s’agit toujours de la même méthode. On obtient donc :

∆MT

|MT |
=

∆m

|m|
+

∆g

|g|
+

∆M

|M |
+

2∆RT

|RT |
+

∆d

|d|
+

∆C

|C|
+

∆ε

|ε|
+

2∆b

|b|
(II.44)

Sans faire l’application numérique, on comprend déjà que l’incertitude va être très importante, ce
qui peut expliquer le fort écart relatif trouvé sur la masse de la Terre (et donc sur ρT ) en section 2.e.
En effet, on avait déjà obtenu une incertitude relative sur C de plus de 16%. On remarque donc que
l’incertitude relative finale va être relativement importante majoritairement du fait de la contribution
de l’incertitude sur C.

On pourrait alors considérer les incertitudes suivantes :

∆m = 0, 001.10−3 kg

∆g = 0, 01 m.s−2

∆M = 0, 001 kg

∆RT = 0, 01.106 m

∆d = 0, 001 m

∆ε = 1, 962.10−5 rad

∆b = ∆σ = 0, 001 m

(on reprend les incertitudes déjà justifiées que l’on complète avec les incertitudes sur g et RT que
l’on défini à partir de la précision donnée dans l’énoncé du TP : on pourrait même faire le choix de
négliger certaines d’entre elles dans la mesure où certaines sont aujourd’hui accessibles avec une grande
précision).

On obtient alors une incertitude relative sur MT de :

∆MT

|MT |
= 22, 97%

On trouve donc quelque chose d’énorme (comme dit partie précédente, on rappelle qu’on s’est déli-
bérément placé dans le cas le plus défavorable qui correspond en réalité à une majoration de l’erreur).
On pourrait effectuer une seconde estimation de cette incertitude en négligeant par exemple les incer-
titudes des paramètres que l’on connait aujourd’hui avec une grande précision. A titre informatif, on
fait donc un calcul de l’incertitude sur MT en négligeant celles sur g et RT .

On obtient alors une valeur de 22, 56% . On remarque donc que les 2 incertitudes négligées n’avaient
que très peu d’influence dans le calcul initial. Cette approximation ne change donc pas grand-chose au
résultat d’incertitude.

On pourrait alors faire un troisième calcul d’incertitude (approché), si on se plaçait dans une
situation où l’on utiliserait la valeur constructeur de C. L’incertitude relative sur C serait alors drasti-
quement réduite : considérons par exemple ∆C = 0, 1.10−9 Nm.rad−1 (au vu de la précision annoncée
par le constructeur). On considère à nouveau : ∆g = 0, 01 m.s−2 et ∆RT = 0, 01.106 m.

On obtient alors une valeur d’incertitude relative sur MT de 7, 79% .

Si on détaillait le calcul, on observerait alors que c’est l’incertitude sur b, i.e sur σ, qui a le plus
d’influence. A elle seule, elle compte pour 4% de l’incertitude relative sur MT et celle sur d compte
elle pour 2% (toutes les autres incertitudes ont donc une contribution relativement minime).
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La conclusion sur ce résultat reste donc, malgré les approximations successives, que l’incertitude
relative sur MT est conséquente, ce qui peut expliquer le fort écart relatif précédemment observé entre
la valeur de MT mesurée et sa valeur théorique.

On va maintenant déterminer l’incertitude sur la masse du Soleil MS .

On reprend donc l’équation (II.31). On utilise la différentielle logarithmique qui nous donne l’in-
certitude relative sur MS :

∆MS

|MS |
=

3∆aT
|aT |

+
∆G

|G|
+

2∆T

|T |
(II.45)

On considère alors, au vu de la précision des données fournies et utilisées pour le calcul de MS , les
incertitudes suivantes : {

∆aT = 0, 1.1011 m

∆T = 0, 01.107 s

En reprenant l’incertitude relative sur G calculée précédemment, on obtient :

∆MS

|MS |
= 26, 87%

Notons cependant qu’on connait aujourd’hui les valeurs de aT et T avec bien plus de préci-
sion. La NASA et l’Union astronomique internationale s’accordent aujourd’hui sur les valeurs de
365, 256363051 jours pour T , et 1, 00000023 UA pour aT . En négligeant les incertitudes sur ces pa-

ramètres, on obtiendrait ainsi une valeur bien plus acceptable :
∆MS

|MS |
= 6, 24% (incertitude relative

sur G).

i) Conclusion de l’exploitation des données

Les conclusions relatives aux résultats obtenus pour G, MT et MS ayant déjà été réalisées dans les
sections associées, on se contentera simplement de synthétiser les résultats.

On retrouve donc ci-dessous, une synthèse de l’ensemble des résultats obtenus dans le cadre de
cette deuxième partie avec leurs incertitudes associées (cf FIGURE 17).

On notera donc simplement que la valeur de G obtenue expérimentalement est tout à fait recevable
(valeur théorique comprise dans notre intervalle de confiance : cf partie 2.g), celle de C beaucoup moins
au vu de l’écart relatif de près de 20% avec la valeur constructeur (cf partie 2.c pour justification de
cet écart).

Pour ce qui est des valeurs des masses de la Terre et du Soleil, la première mène à une valeur
fortement impactée par les incertitudes de mesure, la seconde s’avère être assez proche de la valeur
attendue avec une erreur relative de seulement 3-4% (cf partie 2.h pour plus de détail concernant ces
écarts).

On effectuera également quelques remarques annexes concernant l’expérience mise en oeuvre dans
la partie suivante.

34



II - Détermination de la constante de gravitation - Balance de Cavendish Université de Poitiers

Figure 17 – Synthèse de tous les résultats obtenus avec leur incertitude dans le cadre de cette mani-
pulation (voir FIGURE 16 pour les incertitudes sur les paramètres de modélisation supplémentaires)
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3 Remarques et Observations sur la Manipulation
Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-

pulation mise en oeuvre.

• Commençons tout d’abord par notifier que le dispositif utilisé pour l’expérience (la balance de
Canvendish) est très sensible aux phénomènes de vibrations. En particulier, de très faibles per-
turbations vibratoires (mouvements des expérimentateurs, courants d’air, bruit environnant...)
peuvent rapidement avoir un impact notoire sur les mesures et donc sur la valeur finale de G. Et
c’est d’ailleurs pour cela qu’il a fallu éviter tout contact avec la table sur laquelle était disposée
la balance de Cavendish.

• Un autre aspect limitant que l’on retrouve d’ailleurs dans les incertitudes est relatif à la mise en
oeuvre du protocole expérimental. En effet, au-delà des limites techniques du matériel, il y a des
limites liées à l’expérimentateur. En particulier, il faut bien comprendre que relever la position
du faisceau laser à la main sur consigne d’un autre individu lisant un chronomètre introduit de
fortes sources d’erreur (outre la précision du tracé).

• De là, on aurait tout intérêt à améliorer le dispositif en l’automatisant numériquement, de sorte
à ce que les mesures soient ordonnées et réalisées sur consigne d’un ordinateur (ce sera bien
plus précis qu’un "top" annoncé oralement et la position du faisceau pourra également être
relevée avec davantage de précision). Il serait également intéressant d’améliorer les conditions
d’expérimentation en limitant les vibrations : réalisation de l’expérience dans le vide (auquel
cas, il ne faudra évidemment plus considérer les frottements avec l’air) et dans une zone isolée
avec beaucoup moins de sources de vibrations/perturbations.

• A titre informatif, on peut aussi noter l’existence d’une autre technique plus moderne et sur-
tout plus précise, qui a aujourd’hui remplacé la balance de Cavendish (pour la détermination
de G du moins), à savoir, l’interférométrie atomique. Il s’agit d’une méthode qui utilise des
interféromètres atomiques pour mesurer les interactions gravitationnelles entre des atomes ou
des particules.

• Une ultime remarque que nous pourrions faire concernerait les mesures initiales de d, σ et M .
En effet, on a constaté partie 2.g que ces valeurs constituent les principales sources d’erreur, que
ce soit sur G ou C (surtout les deux premières). Il semblerait donc bon de mesurer ces valeurs
avec davantage de précision, de façon à réduire les incertitudes associées. Pour cela, on pourrait
utiliser une balance plus précise pour la mesure de M (que l’on avait ici considérée précise au
gramme) et un dispositif de mesure laser pour celles de d et σ (ici considérées comme étant
mesurées à la règle graduée au mm).
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4 Annexe

Figure 18 – Tableau représentant l’ensemble des mesures de ∆S à chaque instant t
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Troisième partie

L’effet photoélectrique : mesure de h

Photo du montage utilisé (cellule photoélectrique à gauche et lampe à vapeur de Hg à droite)
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1 Principe de la Manipulation - Effet Photoélectrique

1.1 Description de l’Expérience
L’effet photoélectrique, phénomène crucial dans le domaine de la physique quantique, a marqué

une révolution conceptuelle au début du 20e siècle. Cette découverte fondamentale a jeté les bases
de notre compréhension actuelle de la nature de la lumière et de la matière. Avant cette période, la
lumière était principalement considérée comme une onde, conformément aux travaux de grands physi-
ciens tels que James Clerk Maxwell et Isaac Newton. Cependant, une série d’expériences menées par
divers chercheurs, en particulier Heinrich Hertz, a commencé à remettre en question cette notion établie.

C’est Albert Einstein qui a apporté une contribution révolutionnaire à ce domaine en 1905, dans
l’un de ses articles fondateurs de la physique moderne. À cette époque, Einstein a proposé que la
lumière pouvait également se comporter comme une collection de particules discrètes, qu’il a appelées
"quanta de lumière", maintenant connus sous le nom de photons. Cette hypothèse audacieuse a fourni
une explication convaincante de l’effet photoélectrique, un phénomène observé où l’émission d’électrons
par un matériau soumis à un rayonnement lumineux ne pouvait être expliquée en termes de théorie
ondulatoire classique.

Les travaux d’Einstein ont ouvert une nouvelle ère dans notre compréhension de la lumière et de la
matière. Cette découverte a non seulement permis de résoudre le paradoxe apparent entre la théorie
ondulatoire et corpusculaire de la lumière, mais elle a également conduit au développement de la mé-
canique quantique, une théorie révolutionnaire qui régit le comportement des particules subatomiques.

Dans ce contexte historique où pas moins de 3 prix Nobel ont été attribués (LENNARD en 1905,
EINSTEIN en 1921, puis MILLIKAN en 1923), ce travail pratique se propose d’étudier de manière
expérimentale l’effet photoélectrique et de déterminer la constante de Planck, une constante fonda-
mentale de la physique quantique qui régit la relation entre l’énergie d’un photon et la fréquence de la
lumière associée.

Figure 19 – Photo du dispositif complet : cellule photoélectrique à gauche, multimètre au milieu et
lampe à Hg à droite
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Principe de fonctionnement du montage

Le montage (voir FIGURE 19) comporte tout d’abord une lampe à vapeur de mercure haute pression
à ampoule de quartz, de puissance 100 W et délivrant environ 3000 lumens d’éclairage. On place, en
sortie de cette lampe, une lentille ainsi qu’un réseau de diffraction de 600 traits/mm qui nous permet
de faire apparaitre le spectre de cette lampe décomposé sous forme de raies d’émission (autrement
dit, ce réseau fait apparaitre séparément chaque composante monochromatique composant la lumière
émise par la lampe à Hg) : cf FIGURE 20.

Figure 20 – Schéma représentant la Lampe à Hg et le réseau de diffraction. On fait également
apparaitre les raies du 1er, 2nd et 3ème ordre (uniquement à droite : en réalité, on a une symétrie par
rapport à la raie blanche)

On dispose alors, face à cette lampe, une cellule photoélectrique (globalement isolée de la lumière
environnante). La photocathode présente dans ce dispositif possède une très grande sensibilité aux
rayonnements du spectre visible. De plus, comme cette dernière présente un faible travail de sortie (cf
partie 1.2 pour la théorie), l’effet photoélectrique pourra être observé. Cette photocathode est égale-
ment protégée des autres sources de lumière environnantes à l’aide d’un tube et d’un masque : cf plus
loin FIGURE 22. On verra plus loin que l’on utilisera également des filtres supplémentaires pour sélec-
tionner certaines raies d’émissions seulement et s’affranchir de toute une partie du spectre. On utilisera
aussi un filtre pour filtrer l’intensité lumineuse de la lumière arrivant sur la cellule photosensible.

Le dispositif en question est également construit de façon à ce que l’on puisse mesurer le potentiel
d’arrêt Vs (valeur du potentiel de l’anode nécessaire pour arrêter ces photoélectrons, et donc annuler
le courant I dans le circuit). Ce dernier résulte ici de la charge d’un condensateur par le photocourant
(voir FIGURE 21).

Notons qu’il est donc important d’avoir en tête le fait que l’on ne mesurera pas directement (au
voltmètre) le courant photoélectrique, mais bien une valeur de tension Vs qui correspond en réalité
à la tension de sortie d’un amplificateur opérationnel de très haute impédance d’entrée et de gain unité.
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Figure 21 – Schéma du circuit électrique (l’AOP ne figure pas) du dispositif photoélectrique utilisé
pour les mesures de Vs

On va donc voir partie suivante que la constante de Planck nous sera accessible par l’expérience
en utilisant un voltmètre pour mesurer le potentiel d’arrêt pour plusieurs longueurs d’onde (lumière
incidente, i.e raie d’émission, sur la cellule photoélectrique).

Protocole expérimental

On va donc utiliser un multimètre configuré en voltmètre (en DC : Direct Current, i.e courant
continu) que l’on raccorde au dispositif contenant la cellule photoélectrique pour mesurer ces fameux
potentiels d’arrêts. Pour cela, on va placer la lampe et la cellule photoélectrique de façon à ce que cette
cellule reçoive spécifiquement une raie de couleur bien définie. Pour chaque raie et donc pour chaque
composante monochromatique, on relèvera alors la valeur du potentiel d’arrêt associé.

Expérimentalement, on verra que l’on distingue assez clairement 5 raies colorées : une jaune, une
verte, une indigo, une violette et une à la limite de l’ultraviolet. Plus exactement, on retrouve ce schéma
de façon symétrique de chaque côté de la normale au réseau de diffraction (et lentille). Ce schéma à
5 raies se répète également plusieurs fois de chaque côté : on parle des spectres d’ordres 1, 2, 3... (cf
FIGURE 20).

On ne s’intéressera dans notre cas qu’aux raies d’ordres 1 et 2 (ce choix sera justifié plus loin). No-
tons également que pour les raies verte et jaune, on utilisera un filtre adapté permettant de ne garder
que la raie souhaitée. En effet, les raies jaune et verte de l’ordre 2 viennent se superposer avec les pre-
mières raies de l’ordre 3, il est donc nécessaire de filtrer la lumière incidente (à la cellule photosensible).

On réalise alors 2 expériences :

• La première consiste à la mesure du potentiel d’arrêt pour chaque raie d’émission (intensité lu-
mineuse de 100%, i.e lumière non filtrée). On aligne donc successivement la cellule avec chaque
raie du premier et second ordre (alignement avec la fente), à gauche puis à droite. On obtient
alors 20 valeurs pour chaque série de mesures et on réalise 3 de ces séries de mesures. On note
ici que l’on ne considèrera pas l’ordre 3 car les raies ne sont tout simplement pas discernables
à l’oeil nu (d’autant plus avec la lumière parasite environnante) : c’est même déjà limite pour
certaines du second ordre. Une mesure consiste à placer correctement la raie sur la cellule pho-
toéletrique, on replace alors le tube en position fermée, on appuie sur le bouton "PUSH TO
ZERO" qui remet à zéro la valeur de Vs et on attend que la valeur de Vs affichée par le mul-
timètre se stabilise sur une valeur que l’on pourra finalement relever. On pourra alors, comme
on va le voir partie suivante, déterminer la valeur de h.
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Figure 22 – Schéma représentant le dispositif à cellule photoélectrique avec ses différents composants,
dont le tube de protection en position ouverte

• La seconde expérience cherche cette fois-ci à étudier l’influence de l’intensité lumineuse sur ce
potentiel d’arrêt Vs. Pour cela, on cherche à chronométrer le temps nécessaire pour que le po-
tentiel affiché par le multimètre se stabilise après que l’on ait relâché le bouton "PUSH TO
ZERO". Autrement dit, on mesure le temps de charge du condensateur présent dans le dispo-
sitif photoélectrique. On mesurera cette valeur à saturation du potentiel pour plusieurs raies
monochromatiques. Dans notre cas, on a choisi les raies les plus distinguables et éloignées les
unes par rapport aux autres, à savoir : le vert, l’indigo et le violet/UV (cf FIGURE 23 pour
les longueurs d’ondes associées). Ces valeurs seront mesurées pour différentes intensités lumi-
neuses, intensités que l’on modulera à l’aide d’un filtre magnétique de transmission variable
(100%, 80%, 60%, 40% et 20%) que l’on placera/décalera selon l’intensité souhaitée. A noter
qu’au vu de la dispersion des mesures (on verra en effet que ces mesures permettent davantage
l’identification d’une tendance que l’établissement d’un modèle mathématique), on répètera les
mesures à 3 reprises pour chaque raie et pourcentage de transmission.

Figure 23 – Tableau donnant les longueurs d’ondes associées à chaque composante monochromatique
de la lampe à mercure (i.e à chaque raie)
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1.2 Effet Photoéletrique - Théorie
D’après les travaux d’Einstein sur l’effet photoélectrique, il est établi qu’un rayonnement de fré-

quence ν est constitué de photons (historiquement, il s’agit des fameux "quantas"). Chacun de ces
photons possède une énergie Eν définie comme suit (on parle d’un quantum d’énergie) :

Eν = hν où h est la constante de Planck (III.1)

Cette interprétation du rayonnement implique des comportements différents de ceux prévus par le
modèle ondulatoire qui suppose une distribution continue de l’énergie. Un quantum d’énergie compo-
sant un rayonnement peut avoir une énergie relativement importante (selon la fréquence ν du rayon-
nement) devant celle supposée d’un rayonnement représenté par un modèle ondulatoire (flux continu
et constant d’énergie).

En particulier, l’une des conséquences de cette approche corpusculaire sur l’effet photoélectrique
est que le quantum d’énergie associé à une fréquence ν peut arracher un électron en surface, seulement
à partir d’une énergie seuil appelée "travail de sortie" et notée Φ. Autrement dit, l’électron ne peut
être arraché que si hν > Φ.

Cette condition correspond physiquement au fait que l’énergie à fournir pour arracher un électron
appartenant à la surface d’un matériau est supérieure à celle le liant à ce matériau/à la matière (forces
de liaison : Coulomb, élastique...). Notons donc que la valeur de Φ dépend du matériau considéré.

Lorsque l’électron est arraché, il gagne une certaine énergie cinétique (qui contribue à son éjection)
qui correspond précisément au surplus d’énergie entre celle du quantum d’énergie et le travail de sortie.

Mathématiquement, on peut donc représenter tout cela en une seule équation simple, l’équation
d’Einstein de l’effet photoélectrique :

hν = Φ+ Emax
c où h est la constante de Planck (III.2)

On remarque alors que seule la fréquence ν est susceptible de modifier la valeur de Ec, l’intensité
lumineuse n’ayant donc aucune influence sur cette valeur.

En notant Φ = hν0 (ν0 est alors la fréquence seuil permettant l’arrachement d’un électron à la
surface du matériau considéré), on a (en reprenant l’équation III.2) :

Emax
c = hν − hν0 (III.3)

Ou,

eVs = hν − hν0 = h(ν − ν0) (III.4)

On obtient donc l’équation d’une droite affine de pente h et d’ordonnée à l’origine −Φ = −hν0.
Avec la première expérience décrite précédemment (partie 1.1), on pourra ainsi remonter expérimen-
talement à la valeur de h (voir partie suivante).

Juste à titre d’exemple, la FIGURE 24 disponible à la page suivante présente ce à quoi cette droite
peut ressembler pour un matériau donné.
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Figure 24 – Graphe de Emax
c = eVs = f(ν) pour différents matériaux

2 Exploitation des Mesures
a) Expérience 1 : Relation entre énergie cinétique des électrons et fréquence du rayon-
nement

On met en oeuvre le protocole expérimental détaillé partie 1.1.

On obtient ainsi le tableau de mesures suivant (FIGURE 25 disponible page suivante).

On tracera alors les courbes des Vs = f(ν) comme le montrent les FIGURES 26, 28 et 29 (on ne
représente que la série 1, les graphes dédiés aux autres séries sont disponibles en annexe).
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Figure 25 – Tableau présentant les mesures de Vs pour chaque raie colorée et aux différents ordres
(on fait également figurer les valeurs de pentes, ordonnées à l’origine et h calculées)
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Figure 26 – Graphe de Vs = f(ν) pour la série 1 (cf plus loin pour la justification des incertitudes
considérées)

Comme représenté FIGURE 26, on modélise également ces données sous la forme de droites (régres-
sions linéaires) dont les coefficients directeurs figurent également FIGURE 25 (on utilise les fonctions
"PENTE" et "ORDONNEE A L’ORIGINE" d’Excel pour obtenir une meilleure précision sur ces va-
leurs : cela évite les calculs à la main avec la méthode des moindres carrés, comme mis en oeuvre dans
la partie I). En effet, on peut alors, comme vu partie 1.2, remonter à la valeur de h. Seul le graphe de
la première série de mesures est présent ici, les 2 autres sont disponibles en annexe.

On remarque au passage de très forts écarts entre les mesures du 1er et du second ordre. En parti-
culier, le 2nd ordre droite est très éloigné du premier ordre et présente une forte dispersion des points
de mesures. Cela peut être dû à plusieurs facteurs : un manque d’illumination, et surtout l’éclairage
ambiant qui venait fortement perturber la mesure (en effet, pour la série de droite, l’orientation fai-
sait que la lumière provenant d’un autre poste de TP se reflétait fortement dans la zone de mesure :
résultat, on obtient des mesures faussées). Le second ordre gauche est légèrement mieux en termes de
dispersion, mais la différence reste minime.

Pour déterminer h, on effectue l’analogie entre l’équation de la droite de modélisation obtenue et
l’équation (III.4). On pense en revanche à convertir les grandeurs (Vs en Volts ou eV vers Joules) de
façon à obtenir une valeur de h en J.s (soit une multiplication par 1, 602.10−19C). On remarque alors
que la pente/coefficient directeur de la droite de modélisation correspond en réalité à la constante de
Planck h. L’ordonnée à l’origine correspond elle à −hν0 = −Φ.

Les valeurs de h et Φ ainsi déterminées apparaissent dans le tableau de la FIGURE 25.

On notera alors que les valeurs de h obtenues sont en adéquation avec les remarques faites sur
le second ordre. En effet, on constate que les valeurs de h sont très erronées ou du moins fortement
éloignées de la valeur théorique pour les séries du second ordre.
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Conclusion de l’Expérience

En ne gardant que le premier ordre (séries les moins perturbées par la lumière environnante), on
constate que la modélisation est très précise puisqu’aux incertitudes de mesures près (cf plus loin pour
leur estimation), toutes les valeurs mesurées interceptent la droite de modélisation. De ce fait, on véri-
fie expérimentalement l’équation d’Einstein (équation III.4) et on identifie donc les valeurs de h et Φ
correspondantes (pour chaque série ; cf FIGURE 25).

La série la plus précise, si l’on se réfère à la valeur théoriquement admise de h, est la série 1 avec
le 1er ordre gauche. Cette série donne en effet :

h = 6, 629.10−34 J.s

Φ = 1, 539 eV
|h−hth|

hth
= 0, 05 %

Il s’agit donc d’une valeur qui apparaît même extrêmement proche de la valeur théorique. En
comparaison, la moyenne de l’ensemble de nos séries de mesures donnerait :

hmoy = 6, 002.10−34 J.s

Φmoy = 1, 349 eV
|hmoy−hth|

hth
= 9, 42 %

Enfin, si au vu des sources d’erreurs, on ne considère que l’ordre 1 (gauche et droite), on obtient :
hmoy = 6, 669.10−34 J.s

Φmoy = 1, 551 eV
|hmoy−hth|

hth
= 0, 65 %

On retrouve donc bien le fait que les séries relevées au 2nd ordre introduisent de fortes sources d’er-
reurs. En évitant de les considérer, on obtient une valeur de h très précise avec moins de 1% d’écart
relatif.

On peut alors signaler que la valeur moyenne de Φ, i.e Φmoy = 1, 551 eV = 2, 485.10−19 J corres-
pond à l’énergie seuil nécessaire à l’arrachement d’un électron à la surface de la cellule photoélectrique
utilisée pour cette expérience.

La partie suivante détaille l’expérience 2. Les calculs des incertitudes associées à l’ensemble des
grandeurs sont eux détaillés parties 2.c et 2.d.

b) Expérience 2 : Modèle ondulatoire de la lumière versus modèle quantique

On va ici appliquer le protocole expérimental détaillé partie 1.1.

Notons qu’au vu des difficultés rencontrées lors de la première manipulation, on ne va ici considérer
que le 1er ordre gauche. En effet, le 2nd ordre engendrait une trop grande dispersion des mesures et
la partie droite était plus exposée à la lumière parasite environnante. De là, le 1er ordre gauche était
le plus propice aux mesures.

La mise en oeuvre du protocole expérimental mène à l’établissement de 3 tableaux, chacun corres-
pondant à 1 longueur d’onde (raie d’émission). La FIGURE 27 présente les mesures associées à la raie
verte. Les tableaux associés aux raies indigo et UV sont disponibles en annexe : FIGURES 30 et 31.
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Figure 27 – Tableau présentant la valeur du potentiel d’arrêt et la durée de charge mesurées pour la
raie verte à différents pourcentages de transmission

Notons qu’au vu de la dispersion des mesures, en particulier concernant la durée de charge, on ne
pourra identifier que des tendances.

On peut ainsi réaliser 3 observations notables :

• Tout d’abord, on remarque que le potentiel d’arrêt est globalement constant pour une longueur
d’onde donnée, et ce quel que soit le pourcentage de transmission. On peut donc en déduire
que l’intensité lumineuse n’influence pas le potentiel d’arrêt Vs et donc que le nombre d’élec-
trons arrachés au semi-conducteur de la cellule photoélectrique par le flux lumineux n’est pas
lié et n’est pas fonction de l’intensité lumineuse. Ceci est en parfaite adéquation avec le modèle
quantique initié par Einstein (effet photoélectrique) qui prévoit que l’énergie cinétique maximale
Emax

c de l’électron arraché et éjecté reste inchangée lorsque l’on fait varier l’intensité lumineuse.

• Une seconde observation est que pour une longueur d’onde donnée, la durée de charge tend
clairement à augmenter lorsque l’on diminue le pourcentage de transmission. Autrement dit,
la vitesse d’arrachement des électrons est fonction du pourcentage de transmission et donc de
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l’intensité lumineuse. Elle augmente lorsque l’intensité diminue, i.e la vitesse d’arrachement est
une fonction décroissante de l’intensité lumineuse. Cela n’est cependant pas en contradiction
avec le modèle quantique d’Einstein. Au contraire, cette observation correspond même tout à
fait avec un modèle corpusculaire. On peut en effet faire l’analogie du rocher et du sable : i.e on
peut faire tomber une tonne de sable très progressivement sur sa tête, mais certainement pas
une pierre d’une tonne directement. Pourtant, il s’agit bien de la même masse, mais seulement,
elle est "transmise" (y voir l’analogie avec l’énergie et donc le potentiel d’arrêt Vs) sur une durée
plus importante (la durée de charge du condensateur).

• Une autre remarque concerne les différences de potentiels d’arrêts et des durées de charge pour
différentes longueurs d’ondes à un pourcentage de transmission donné. En effet, on constate
expérimentalement que pour un pourcentage de transmission donné, (i.e pour une intensité
lumineuse fixée), plus la longueur d’onde diminue, (i.e plus la fréquence augmente), plus le po-
tentiel d’arrêt et la durée de charge augmentent. Pour le potentiel d’arrêt, cela est parfaitement
en adéquation avec le modèle quantique (cf partie 2.a) puisqu’une augmentation de fréquence
induit une augmentation de l’énergie du quantum d’énergie (i.e du photon). Pour la durée de
charge, cela signifie que les hautes fréquences induisent un régime transitoire plus important
(plus long) pour la charge du condensateur (cela est pour le coup lié au condensateur électrique
et donc au circuit présent dans le dispositif photoélectrique).

En réalité, il y a une quatrième observation à réaliser. Effectivement, on a précédemment énoncé
que le potentiel d’arrêt était globalement constant pour une longueur d’onde donnée. Il se trouve que
cette observation est approchée puisque l’on constate en réalité une légère diminution de Vs lorsque que
l’on diminue le pourcentage de transmission. Dit autrement, une diminution de l’intensité lumineuse
induit une légère diminution du potentiel d’arrêt Vs. Cela semble donc suspect puisqu’en contradiction
avec le modèle proposé par Einstein.

Dans les faits, non, il ne s’agit probablement pas d’une contradiction, mais plutôt de la manifesta-
tion d’un effet très connu et très important de la physique quantique, le fameux effet tunnel. Cet effet
fort contre-intuitif ne peut être décrit qu’en théorie quantique (parfaitement impossible en physique
classique). Il correspond à la propriété que possède chaque objet quantique de franchir une barrière de
potentiel alors que son énergie est en réalité inférieure à l’énergie seuil (minimale donc) nécessaire pour
franchir cette barrière. Physiquement, en s’imaginant objet quantique, on est en train de dire que l’on
peut traverser les murs (on identifie alors mieux le paradoxe qui se poserait en physique classique). Cet
effet existe pourtant bien et il résulte du caractère probabiliste et donc non-déterministe de la physique
quantique. Attention, ce caractère/cet effet certes probabiliste est bien vérifié dans la réalité ! Penser
que l’effet tunnel est une erreur engendrée par cet aspect probabiliste (et donc soit-disant "incertain")
est justement une erreur !

D’ailleurs, on vient sans s’en rendre compte de le constater expérimentalement dans notre ma-
nipulation. Ici, nos objets quantiques sont nos électrons qui vont passer la barrière de potentiel du
condensateur sans pourtant avoir l’énergie requise pour la franchir en théorie. Cela résulte sur nos
mesures en ces légères variations du potentiel d’arrêt Vs.

Notons cependant que l’effet tunnel est généralement plus significatif dans des contextes impliquant
des barrières potentielles plus élevées et des particules avec une énergie cinétique plus faible. Dans le
cas de l’effet photoélectrique, où les énergies typiques des électrons émis sont relativement élevées,
l’effet tunnel peut avoir une influence minime sur le potentiel d’arrêt (l’effet est donc très faible ici,
d’où de très faibles variations de Vs).

Enfin, cette expérience ne doit pas nous laisser penser que le modèle ondulatoire est à jeter ! En effet,
toutes ces observations se sont justifiées par un modèle corpusculaire (quantique), mais il existe bien
un phénomène qui ne se décrit que dans le cadre du modèle ondulatoire. Rappelons que l’on utilisait
un réseau de diffraction pour diffracter la lumière de façon à ce que l’on obtienne séparément toutes
nos raies d’émission (de la lampe au mercure). Eh bien il se trouve que le phénomène de diffraction ne
peut être décrit (à l’heure actuelle) que par le modèle ondulatoire. On vient donc de mettre en évidence
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que la lumière ne peut être décrite par un modèle unique (corpusculaire ou ondulatoire). Ces 2 modèles
sont nécessaires pour décrire complètement la lumière, c’est ce qu’on appelle la dualité onde-corpuscule.

Notons d’ailleurs qu’il s’agit là d’un sujet extrêmement important de la physique contemporaine.
Effectivement, beaucoup de physiciens dont le grand Stephen Hawking malheureusement décédé en
2018 ont concentré et concentrent encore leurs travaux sur la recherche d’une théorie unique, la fameuse
théorie du tout ou "Theory of Everything" qui unifierait hypothétiquement l’ensemble des règles de
la physique moderne, en conciliant notamment les lois de l’infiniment grand avec celles de l’infiniment
petit (physique quantique). Même si la dualité onde-corpuscule n’est pas nécessairement au centre de
cette théorie, elle pourrait changer de visage si une telle découverte était réalisée.

c) Estimations des incertitudes de mesures

1) Sources d’incertitude sur Vs

On considère la précision du multimètre, soit une précision au 3 ème digit, i.e à 0, 001 V près. De
là, on se doit à minima de considérer une incertitude de cet ordre de grandeur.

Cependant, lors des mesures, on a pu constater des oscillations de la valeur de tension affichée. Dans
les pires cas, c’est le second digit qui changeait (lorsqu’on approchait du régime permanent). Au vu des
variations constatées le jour de la manipulation, on s’est arrêté sur une valeur de ∆Vs = ± 0, 030 V .

2) Sources d’incertitude sur ν

La valeur d’incertitude sur la fréquence ν ne peut être établie qu’à partir des valeurs numériques
fournies pour la réalisation de la manipulation. De ce fait, comme elles ont été données sous forme
de longueurs d’ondes avec 2 digits, on doit aussi considérer une valeur approchée de la vitesse de la
lumière c :

ν =
c

λ
(III.5)

La différentielle logarithmique mène de façon immédiate à (cas le plus défavorable comme d’habi-
tude) :

∆ν

|ν|
=

∆c

|c|
+

∆λ

|λ|
(III.6)

Au vu de la précision des données numériques considérées, on établit :
c = 3, 0.108 m.s−1

∆c = ± 0, 1.108 m.s−1

∆λ = ± 0, 01 nm

Notons que pour chaque valeur de λ, on obtient une valeur d’incertitude relative identique lorsque
l’on respecte le nombre de chiffres significatifs. On considèrera donc la même valeur d’incertitude re-
lative pour toutes les valeurs de λ (en réalité, cette incertitude relative s’avère négligeable devant celle
sur c).

De là, on obtient pour chaque raie colorée (pour chaque fréquence ν donc) :
∆νjaune = 1, 733.1013 Hz

∆νvert = 1, 832.1013 Hz

∆νindigo = 2, 295.1013 Hz

∆νUV = 2, 740.1013 Hz

Autrement dit, on a une incertitude relative sur ν de 3, 33%.
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2) Sources d’incertitude sur t

L’incertitude sur t est en réalité assez subjective, car elle correspond à l’incertitude du chronomé-
trage du temps de charge du condensateur qui se retranscrit sur nos mesures de Vs. Il s’agit donc plutôt
d’une source d’erreur supplémentaire sur Vs.

En réalité, il faudrait donc aussi considérer une incertitude supplémentaire sur Vs (uniquement pour
l’expérience 2). Mais cela va de toute façon être inutile ici puisqu’elle serait absolument gigantesque
au vu des difficultés rencontrées pour cette mesure (durée de charge). En effet, la valeur de Vs ne se
stabilisait pas vraiment, elle continuait en réalité à osciller, certes très légèrement, mais pendant des
durées absolument substantielles parfois bien plus élevées que les valeurs réellement considérées comme
temps de charge. De là, considérer ces incertitudes mènerait à des valeurs d’incertitudes relatives de
plus de 100%. Les mesures n’auraient donc plus aucun intérêt physique. Effectivement, rappelons que
la seconde expérience visait à identifier des tendances d’évolution des grandeurs et non des valeurs
numériques précises. Les incertitudes de mesures n’apporteront donc rien ici puisque qu’aucune valeur
numérique n’est isolément considérée, mesurée ou utilisée pour un calcul quelconque.

d) Calcul des incertitudes sur h et Φ

Estimons maintenant la propagation d’erreur de façon à calculer l’incertitude sur h et Φ.

On commence par rappeler que Φ est notre ordonnée à l’origine et h notre coefficient directeur dans
notre droite de régression.

De là, on peut soit utiliser un logiciel comme LatisPro pour estimer les incertitudes sur ces para-
mètres de modélisation, ou alors les estimer à la main de façon approchée (comme nous n’avons cette
fois-ci pas utilisé LatisPro pour l’établissement des modélisations, c’est cette méthode manuelle que
l’on utilisera).

En considérant une incertitude sur Φ similaire à celle considérée sur les valeurs de l’axe des ordon-
nées, à savoir sur Vs, on obtient :

∆Φ = ± 0, 030 V = ± 0, 030 eV = ± 0, 048.10−19 J

Soit avec la valeur moyenne de Φ précédemment déterminée (cf partie 2.a), une incertitude relative
de :

∆Φ

|Φ|
= 1, 94 %

Pour le coefficient directeur h, on l’estime, en revenant à sa définition, comme rapport de valeurs
d’ordonnées sur valeurs d’abscisses (en procédant comme cela, on va obtenir une valeur majorée de
l’incertitude de mesure sur h). Ainsi, on considère l’incertitude d’un rapport de valeurs dont on connait
les incertitudes respectives. La différentielle logarithmique donne alors de façon immédiate (notons une
seconde majoration de l’incertitude calculée puisque l’on se place dans le cas le plus défavorable où
toutes les erreurs s’ajoutent sans d’éventuelles compensations) :

∆h

|h|
=

∆ν

|ν|
+

∆Vs

|Vs|
(III.7)

On obtient ainsi l’incertitude relative sur h (on prend la valeur moyenne de Vs pour le calcul :
notons qu’au vu de toutes les majorations d’incertitudes réalisées ici, considérer la moyenne ne va pas
tant introduire d’écart et permettra l’obtention d’une valeur surévaluée de l’incertitude sur h) :

∆h

|h|
= 3, 33% + 2, 81% = 6, 14 %

(A noter qu’on aurait encore pu davantage surévaluer cette incertitude en considérant la valeur
minimale de Vs au lieu de la valeur moyenne).
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Finalement, on obtient avec la valeur moyenne de h précédemment déterminée (cf partie 2.a) :

∆h = 0, 410.10−34 J.s

A titre de comparaison, une modélisation sur LatisPro et donc une estimation d’incertitude par ce
logiciel était ±0, 2.10−34 J.s (on constate bien une surestimation de l’incertitude dans le cas précédent,
i.e calcul manuel).

e) Conclusion de l’exploitation des données

On a donc pu déterminer de façon expérimentale la constante de Planck ainsi que le travail de sortie
de la cellule photoélectrique (ou plutôt du matériau la composant) avec une précision correcte :{

hexp = (6, 629 ± 0, 410) · 10−34 J.s

Φexp = 1, 551 ± 0, 030 eV

Dans un second temps, nous avons pu constater l’importance du principe de dualité onde-corpuscule,
tout en mettant en évidence la validité expérimentale du modèle quantique d’Einstein (effet photoélec-
trique). On a aussi pu noter et vérifier plusieurs aspects de cette théorie, à savoir :

- le fait que l’intensité lumineuse n’influe pas sur l’énergie cinétique maximale de l’électron arraché
lors de l’effet photoélectrique ;

- le fait que la vitesse d’arrachement des électrons est fonction de l’intensité lumineuse ;
- le fait que les hautes fréquences correspondent à une plus haute énergie (en termes de quanta)

que les basses fréquences (E = hν).

3 Remarques et Observations sur la Manipulation
Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-

pulation mise en oeuvre.

• Commençons par noter que les deux manipulations mises en oeuvres étaient très sensibles à la
lumière ambiante. Cette dernière venait en effet perturber nos mesures et cela s’est ressenti en
partie 2.a lors du calcul de h (cf écarts sur h FIGURE 25). Il serait donc bon de réaliser cette
expérience dans une pièce parfaitement sombre (sans autres sources lumineuses dans la salle)
de façon à améliorer nos résultats (rappelons qu’on avait été contraint de ne plus considérer nos
mesures à droite, car trop exposées à la lumière environnante).

• De plus, lors de la seconde expérience, les variations/oscillations de la valeur de tension affi-
chée par le multimètre rendaient la mesure du temps de charge du condensateur relativement
arbitraire (il s’agissait plus d’une estimation que d’une mesure). De ce fait, il est important
de signifier qu’aucune mesure précise n’est à retenir ici (les incertitudes seraient littéralement
gigantesques), seules les tendances constatées et observées sont exploitables.
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4 Annexe

Figure 28 – Graphe de Vs = f(ν) pour la série 2

Figure 29 – Graphe de Vs = f(ν) pour la série 3
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Figure 30 – Tableau présentant la valeur du potentiel d’arrêt et la durée de charge mesurées pour la
raie indigo à différents pourcentages de transmisison
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Figure 31 – Tableau présentant la valeur du potentiel d’arrêt et la durée de charge mesurées pour la
raie UV à différents pourcentages de transmisison
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Conclusion

Ce rapport rend ainsi compte des conclusions, mais aussi des observations et remarques relatives à
ces 3 travaux pratiques.

On a donc pu, au travers de ces manipulations, établir ou plutôt vérifier les valeurs des dites
constantes fondamentales de la physique, aujourd’hui établies avec une bien meilleure précision cepen-
dant. Rappelons alors nos résultats :

c = (3, 09 ± 0, 06) · 108 m.s−1

G = (6, 471± 0, 404) · 10−11 m3.kg−1.s−2

h = (6, 629 ± 0, 410) · 10−34 J.s

En comparaison aux valeurs aujourd’hui admises :
cth = 299 792 458 m.s−1

Gth = 6, 6742 · 10−11 m3.kg−1.s−2

hth = 6, 6260693 · 10−34 J.s

Ce rapport a également permis de noter les limites des expériences mises en oeuvres pour la dé-
termination de ces constantes, avec un regard tout particulier porté sur la justification et l’étude des
incertitudes de mesures.

A cette occasion, diverses propositions et voies d’améliorations propres à chaque partie ont été
proposées et développées.

Par ailleurs, au-delà de la détermination de ces constantes et de la découverte des méthodes his-
toriques ayant permis leur détermination, ces expériences nous ont permis d’identifier l’importance de
ces constantes dans le monde de la physique.

La constante de Planck h occupe en effet une place de premier plan en physique et en mécanique
quantique, puisqu’elle représente/caractérise le lien entre la fréquence d’un rayonnement et l’énergie
d’un photon le composant. Autrement dit, cette constante établit le lien entre les propriétés décrites
dans le cadre du modèle corpusculaire et celles décrites par le modèle ondulatoire. Bien qu’établie
initialement par Einstein dans le cadre de son étude de l’effet photoélectrique, cette constante est
aujourd’hui essentielle à la compréhension du concept de dualité onde-corpuscule.

De la même façon, la constante de célérité c ou vitesse de la lumière dans le vide est elle essentielle
dans les théories de relativité restreinte et relativité générale. Outre le fait qu’elle serve aussi de valeur
de référence dans différentes branches de la physique, elle a notamment permis de redéfinir le mètre à
l’occasion d’un accord international survenu en 1983.

Enfin, la constante de gravitation G est elle d’une importance capitale dans le monde de l’infini-
ment grand et plus particulièrement en relativité générale. Elle est donc extrêmement importante en
astrophysique et en astronomie classique. Effectivement, elle permet, comme vu précédemment avec le
Soleil, de calculer à l’aide de la troisième loi de Kepler, la masse d’un astre autour duquel gravite une
planète (cf partie associée).
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