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Avant-propos

Le théme choisi, a savoir "Les constantes fondamentales de la physique", nous conduit a I'étude
quantitative de trois constantes considérées comme invariantes, correspondant & des propriétés univer-
selles du monde qui nous entoure et jouant ainsi un réle majeur en physique.

Dans ce rapport, nous détaillerons les trois expériences réalisées dans le cadre de ce théme et qui
nous ont permis de déterminer expérimentalement ces trois constantes fondamentales : la vitesse de la
lumiére ¢, la constante de gravitation G ainsi que la constante de Planck h.

Chacun de ces trois travaux pratiques correspond & I'une des expériences qui, historiquement, a
permis la détermination de chacune de ces constantes.

La suite de ce rapport s’articule donc en trois parties, soit une par constante. Chaque partie est
ensuite découpée en sous-parties présentant systématiquement le principe de la manipulation, 1’ex-
ploitation des mesures réalisées lors de cette derniére ainsi que 1’étude des incertitudes associées. On
retrouve également pour chaque expérience une sous-partie dédiée aux remarques et observations sup-
plémentaires concernant la manipulation présentée (certaines remarques seront cependant réalisées
directement lors de I’exploitation des résultats/mesures si cela est plus adéquat et pertinent).

Une conclusion finale de ce théme faisant état de résumé et d’ouverture est aussi disponible en fin
de rapport (cf table des matiéres).

Chronologie des séances

Les constantes fondamentales de la physique Date
Vitesse de la lumiére Mardi 06 Février 14h
Analyse des résultats c Mardi 13 Février 14h

Mesure de la constante de gravitation G par la méthode de Cavendish | Mardi 20 Février 13h30

Analyse des résultats Cavendish Mardi 05 Mars 14h
L’effet photoélectrique : mise en évidence et détermination de h Mardi 12 Mars 14h
Analyse des résultats h Mardi 19 Mars 14h
Préparation du rapport écrit Mardi 26 Mars 14h




Premiére partie

Mesure de la vitesse de la lumiére par
la méthode de Foucault

Photo du montage utilisé (miroir sphérique non visible sur la photo)
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1 Principe de la Manipulation - Méthode de Foucault

1.1 Description de ’Expérience

Cette expérience aura pour objectif la détermination de la vitesse de la lumiére (dans I'air). Pour
cela, nous allons utiliser la méthode mise au point par Léon Foucault en 1862 & Paris lorsqu’il cherchait
a déterminer ou plutét & mesurer la vitesse de la lumiére.

Spherical
Mirror

Rotating
Mirror
-

E% = = BEmmsplRter™
A

( Laser
V

)}

- ——— e —— s Polarizer

B .
Measuring B
Microscope
Y

FIGURE 1 — Schéma représentant un aller-retour suivi par un faisceau lumineux émanant du laser dans
le cas ou le miroir plan ne tourne PAS (au repos)

Principe de fonctionnement du montage

On commence par allumer le laser qui envoie un faisceau au travers de deux lentilles convergentes
L1 et Ly. Comme représenté sur la FIGURE 1, la particularité est ici que le systéme optique formé
par les 2 lentilles fait ressortir ce faisceau a l'infini (rayons paralléles comme en entrée du systéme).

Ce rayon lumineux rencontre alors un miroir plan qui va dévier le faisceau selon les lois de Descartes
vers un second miroir, sphérique cette fois-ci.

Ce second miroir est placé de sorte & ce que le rayon revienne "sur lui-méme" ou plutot avec la
méme direction, mais dans le sens opposé. Cela est dii au fait que le rayon arrive selon une direction
qui se confond avec la normale au point d’incidence (du miroir sphérique). Le rayon revient alors dans
l’autre sens.

Cependant, tout 'intérét de cette manipulation réside dans le fait que le miroir plan précédemment
évoqué (vers lequel revient alors le faisceau a ce stade) est mis en rotation rapide. Il s’agit en réalité
d’un miroir tournant (cf FIGURE 2). De la, pendant que le rayon faisait son aller-retour du miroir
plan au miroir sphérique, le miroir plan a eu le temps de tourner d’un angle 6.
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Ainsi, le rayon lumineux revenant sur le miroir plan est dévié d’un angle 26 comme le veulent les
lois de Descartes. Résultat, du fait du nouvel angle pris par le miroir plan, le faisceau reviendra vers
la source avec un certain décalage As’. Et c’est justement grace a la mesure de ce décalage et en
connaissant la vitesse de rotation du moteur (i.e du miroir plan) que 'on pourra calculer la vitesse de
la lumiére dans 'air de la salle.

Protocole expérimental

La manipulation consistera donc a relever/mesurer le décalage As’ a ’aide du microscope de gran-
dissement et du micrométre de précision (on mesure ce décalage en alignant notre réticule avec la tache
formée par le faisceau dévié) pour différentes valeurs de vitesse de rotation w du moteur et donc du
miroir tournant : valeurs elles-mémes mesurées a ’aide d’un détecteur optique.

Plus précisément, on cherchera a mesurer As’ pour des valeurs de w que I’on augmentera par palier
de 100 tours.s™! et ce de fagon a couvrir un intervalle de [100,1000] tours.s~!. Nous ne réaliserons
pas la mesure & 1500 tours.s~! pour des raisons pratiques que nous détaillerons davantage plus loin
(le faisceau n’était tout simplement plus visible).

On effectuera donc 10 mesures dans le sens de rotation horaire et 10 mesures dans le sens anti-
horaire (sens de rotation du moteur). Nous réaliserons alors 3 séries de mesures de ce type (3 x 20
mesures) : 1 série par membre du trindme (encore une fois, nous détaillerons et justifierons ce choix
par la suite).

Dans un second temps, on mesurera les distances D, A et B a I’aide des graduations présentent sur
le banc optique (pour A et B) et d’un métre mesureur (pour D). Les valeurs seront ensuite consignées,
car nécessaires au calcul de ¢ comme nous le verrons partie suivante, i.e partie 1.2.

Mg
o /f D
|‘/”. ] /z
rllr’f
_,r" a .‘.'H _ 2
y 2 g 12 A ey N
. * '1!" —'- / e ' o8
A5 HER ) ] ! g
Plane of
MR final image
Image L,
de MF

FIGURE 2 — Schéma simplifié représentant un aller-retour de 2 rayons lumineux émanant du laser pour
2 positions différentes du miroir plan tournant (permettant d’illustrer 'origine du décalage As’ évoqué
plus haut)
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1.2 Démonstration de I’Expression de c

0+A0 | 2(0+A0)

\ 0440 l

N k/

FIGURE 3 — Schéma simplifié représentant la déviation d’un rayon réfléchi aprés rotation du miroir
plan tournant (et faisant figurer le décalage AS’ entre S et S’ au niveau du miroir sphérique)

Nous allons ici chercher a exprimer ¢ en fonction des valeurs connues (mesurées), soit en fonction
de w, As’, A, B et D. Pour cela, on commence par noter la définition de la vitesse de rotation du
moteur (donc du miroir tournant) :

0

Or, comme la distance entre le miroir tournant et le miroir sphérique est fixe et notée D, on sait

que lors de cet aller-retour, la lumiére se déplacant & une vitesse ¢ va parcourir une distance 2D, soit :

2D
=— 1.2
c= 7 (1.2)
En combinant (I.1) et (I.2), on obtient :
CcC = ng (1.3)

De plus, avec la FIGURE 3, on peut aisément identifier un triangle tel que (approximation des
petits angles pour 6 trés petit, i.e simplification du DL de tan) :

AS’ AS’
tan20 ~20 = == — |9~ S (1.4)
En injectant (I.4) dans (I1.3), on a :
4D%w

L’étape suivante consiste a utiliser la formule de grandissement d’une lentille mince. On considére
alors 'objet de Lo comme étant 'image formée sur le miroir sphérique par les rayons ascendants. Le
reflet méne a une image par L2 qui correspond a ce que l’on observe par 'oculaire du microscope
de grandissement. Sachant ¢a, on sait que l'objet est de taille AS’ et que ce dernier est situé a une
distance D + B du centre de la lentille Ly. De méme, I'image par Lo est de taille As’ et est située a
une distance A du centre de L. On peut alors appliquer la formule du grandissement pour Lo :

As' A
AS'  D+B (L6)
En réarrangeant cette expression on récupére :
D + B)As’
AS' = % (L7)

Il ne reste plus qu’a injecter (1.7) dans (I.5) pour finalement obtenir I’équation finale (que nous
utiliserons par la suite pour calculer ¢) :

B 4AD? LY
" D+ B A¢

¢ (1.8)
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2 Exploitation des Mesures

a) Acquisition des données expérimentales

On suit le protocole expérimental détaillé partie 1.1. On réalise 3 séries de 20 mesures : 10 mesures en
sens de rotation horaire et 10 autres en sens antihoraire. Chaque série de mesures étant complétement
réalisée par le méme manipulateur (et 3 séries, car 3 expérimentateurs) pour éviter toute différence
d’évaluation de la position du faisceau sur une méme série du fait d’éventuels défauts de vue de chacun.
On fera a terme le calcul de valeurs moyennes en considérant les 3 séries de mesures (moyenne des 3
valeurs de ¢ obtenues avec les 3 séries).

On obtient ainsi les 3 tableaux de mesures suivants :

Mesures 1 (Yoan) Mesures 2 (Arnaud) Mesures 3 (Ewan)
w (trs/s) s' (mm) w (trs/s) s' (mm) w (trs/s) s' (mm)
-100 11,30 -100 11,32 -102 11,31
-200 11,28 -200 11,29 -199 11,29
-299 11,26 -299 11,27 -300 11,27
-401 11,24 -401 11,25 -400 11,24
-501 11,22 -500 11,23 -502 11,23
-601 11,20 -600 11,21 -601 11,20
-700 11,18 -701 11,18 -700 11,17
-801 11,16 -799 11,16 -803 11,15
-900 11,14 -899 11,14 -900 11,13
-1000 11,12 -999 11,12 -1002 11,11
100 11,36 101 11,35 101 11,33
200 11,38 200 11,37 201 11,36
300 11,40 301 11,40 300 11,39
401 11,43 400 11,42 398 11,42
499 11,44 500 11,44 501 11,44
602 11,46 601 11,46 600 11,45
701 11,48 698 11,48 702 11,47
800 11,51 799 11,50 799 11,49
900 11,54 900 11,52 900 11,53
999 11,57 999 11,55 1002 11,54

FIGURE 4 — Tableaux représentants les résultats obtenus pour les 3 séries de mesures réalisées (sens
horaire pris positif et inversement)

On peut maintenant commencer 1’exploitation de ces données et on va pour cela réaliser 3 courbes,
ou plutdt droites ici (on commence par ne considérer que le nuage de points correspondant aux me-
sures). Plus précisément, on trace les graphes de As’ = f(w) disponibles & partir de la page suivante
(le premier ci-dessous, les suivants en annexe 4).
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Série 1: As' = f(w)

y =0.0002x + 11.334

11.60

As' (um)

xs' (um)

11.00
-1500 -1000 -500 0 500 1000 1500

w (tours/s)

FIGURE 5 — Graphe de As’ = f(w) pour la série de mesures 1 (Yoan)

On constate alors ce qui est attendu, c’est-a-dire une droite, soit une allure linéaire. Dans notre
cas, on remarque que notre ordonnée a l'origine n’est pas nulle, car la position de départ (avant mise
en rotation du moteur) n’avait pas été définie comme notre zéro en ordonnée (i.e pour w = 0, on avait
As’ # 0). Cela n’aura cependant pas la moindre importance pour la suite, puisque c’est la variation
de s’ qui va nous intéresser pour le calcul de ¢ comme vu partie 1.2 (équation 1.8).

Avant de poursuivre, nous allons faire apparaitre 3 courbes de tendances (modéles linéaires) avec
Excel pour obtenir les équations des droites (régressions linéaires) et donc les coefficients directeurs de
ces dernicres. Les résultats obtenus avec Excel (équations et tracés) apparaissent FIGURES 5, 7 et 8
(FIGURE 5 disponible ci-dessus, les autres sont elles disponibles en annexe 4, comme dit précédem-
ment).

Au vu de la précision avancée par Excel (relativement faible en I'occurrence), on a préféré effectuer
nos propres calculs d’équations de droites. Pour cela, nous avons utilisé la méthode des moindres carrés
pour établir, pour chacune des courbes, un modéle affine d’équation y = ax + b.

On va maintenant détailler cette méthode en totalité, avant de donner les résultats numériques
associés aux séries 1 a 3 (la procédure étant bien entendu strictement la méme pour chacune des séries
de 20 mesures chacune).
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b) Modélisation - Méthode des moindres carrés

On cherche donc une modélisation de la forme y = ax + b avec :

Og
a=—=t
O.QE‘

etb=7y—ax (1.9)

oll 0,y est la covariance et o2 Pécart type de x au carré aussi appelé variance de x (¥ et T étant

alors les valeurs moyennes de y et z).

Ici, les x; correspondent aux valeurs de w et les y; aux valeurs de As’. En connaissant les définitions
)
d’écart-type, de variance et de moyenne, on peut écrire, et ce, pour chaque série de mesures (n = 20) :

Y, _ Xy
et |y =
20 20

(1.10)

T =

Y2
or =/ Var(z) = ;(;Z — 72 (I.11)

P S —T)(yi —y) _ X(wwyi —Tyi —xiy+7TY) | Saay T (L12)
2y 20 20 20 4 '

On va maintenant détailler les calculs pour la série 1 puis on donnera sous forme de tableau (cf
FIGURE 6), 'ensemble des résultats pour chacune des séries (la méthode étant identique pour les
séries 2 et 3). En reprenant alors les valeurs du FIGURE 4, on obtient :

Z = —0,05 tours.s ! et 7 = 11,33 mm
De plus,
Zm? =7 705 613 tours®.s2 et Yxy; =1 699,26 mm.tours.s”!
D’ou

(73, = 385 280,65 tours®.s™2 et Opy = 85,53 mm.tours.s”!

Finalement, on reprend I’équation (1.9) :

a=2,22.10"% mm.s.tours™* ‘et b=11,34 mm

On a donc I'équation de notre de régression (linéaire) pour la série 1 :

ly=2,22.10""2 + 11,34 (1.13)

On remarque alors qu’on a gagné en précision sur le coefficient directeur de cette droite quand on
compare avec I’équation obtenue avec Excel. D’ou l'intérét d’avoir également fait les calculs & la main
puisque cela permettra 'obtention d’une valeur plus précise de c.

Comme annoncé précédemment, on ne va pas re-détailler le calcul pour les 2 séries restantes, on va

simplement synthétiser 'ensemble des résultats pour les 3 séries dans le tableau ci-dessous, i.e FIGURE
6 :

10
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FIGURE 6 — Tableau synthétisant les données associées aux 3 régressions linéaires réalisées a l'aide de
la méthode des moindres carrés pour chacune des séries de mesures

On obtient donc 3 équations de droites relativement similaires (aux imprécisions et incertitudes de
mesures pres) :

y1 = 2,22.10" %z, + 11,34
Yo = 2,12.107%z5 + 11,33
yz = 2,14.107%z5 + 11, 33

c¢) Calcul de c

Pour le calcul de ¢, on reprend I’équation (I.8) démontrée partie 1.2. On considére alors les droites
déterminées & l'instant, plus précisément, on va s’intéresser a leurs équations.

En effet, on peut identifier le coefficient directeur ou plutot U'inverse du coefficient directeur de
notre droite (respectivement chacune de nos 3 droites) au sein de équation (I1.8). Il s’agit en effet du
rapport z%. On fait cependant attention & convertir 'ensemble de nos unités, de fagon a avoir un w
en rad.s~! et un As’ en m. De méme, on convertira ’ensemble de nos valeurs mesurées de A, B et D
en m. Les valeurs de A, B et D ayant été mesurées avec la régle graduée présente sur le banc optique
pour les 2 premiéres et grace & un métre mesureur pour la derniére (D) :

A=0,264m
B =0,496 m
D =10,55m

(pour A, on a mesuré la distance entre les 2 lentilles et on a retranché la distance focale de L;.)

On notera que ces valeurs sont mesurées/données avec 3 chiffres significatifs, i.e "3 CS").

Avec les valeurs de A, B, D ainsi que de linverse du coefficient directeur a de chacune de nos
droites de régression, on peut exprimer et calculer ¢ (avec a convertie en m.s.rad~!); c’est d’ailleurs
tout l'intérét de la formule démontrée et reformulée ci-dessous :

UAD? W | 44D? 1
“DxB Ay |DxB (I.14)

Si on prend 'exemple de la série 1, on obtient :

Cc

11
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4% 0,264 x 10,552 o
c1 = X -
10,55 4+ 0,496 2,22.10~4.1073

=3,01.10% m.s7!

On fait de méme pour les 2 autres séries et on trouve :

c1 =3,01.10% m.s~!
¢y =3,15.108 m.s~!
c3 = 3,12.10% m.s~!

On va maintenant chercher & évaluer les incertitudes de mesures sur chacune des données expéri-
mentales, de fagon & déterminer 'incertitude sur ¢ via ’analyse de la propagation des erreurs.

d) Estimations des incertitudes de mesures

On commence par définir les incertitudes de mesures sur chacune des données expérimentales :

1) Sources d’incertitude sur As’

On considére tout d’abord la précision constructeur du micrométre : + 0,005 mm (soit alors une
incertitude de £ 0.005 mm).

Ensuite, on considére la plus petite graduation présente sur le micrométre, soit une incertitude de
+ 0,005 mm (graduation au 0.01 mm).

Enfin, on considére I'extrapolation de 'oeil liée a la lecture de la graduation sur le micrométre, soit
une incertitude de £ 0.005 mm.

On obtient alors une incertitude totale de + 0.015 mm que 'on va volontairement majorer au
centiéme supérieur, soit £+ 0.02 mm, du fait des difficultés d’observation de la tache rouge qu’il nous
fallait aligner sur le réticule avec un maximum de précision (on remarque alors que toutes les valeurs
mesurées se retrouvent dans notre intervalle de confiance, cf barres d’erreurs sur les graphiques 5, 7 et
8).

2) Sources d’incertitude sur w

1

On considére tout d’abord la précision constructeur du miroir tournant : + 1,0 tours.s~' (soit une

incertitude considérée de + 1.0 tours.s™1).

Ensuite, on regarde la plus petite graduation affichée sur 'afficheur digital, soit une incertitude de
+ 0.5 tours.s~! (graduation au tour prés).

On obtient alors une incertitude totale de + 1.5 tours.s™!.

3) Sources d’incertitudes sur A et B

On commence par considérer 'incertitude liée & la plus petite graduation présente sur la régle du
banc optique, soit une incertitude de &+ 0.5 mm (graduation au lmm preés).

On pense aussi a 'incertitude liée a I’extrapolation de I'oeil lors de la lecture de la mesure sur cette
méme régle : £ 0.5 mm.

On obtient alors une incertitude totale de £+ 1.0 mm.

12
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4) Sources d’incertitude sur D

On commence par considérer l'incertitude liée & la plus petite graduation présente sur le métre me-
sureur, soit une incertitude de £ 1.0 mm (graduation a 2mm pres).

On reléve également 'incertitude liée & 'extrapolation de 1'oeil lors de la lecture de la dite mesure
sur le métre mesureur : £ 1.0 mm.

Cependant, il convient ici d’identifier une toute autre source d’erreur. En effet, lors de la mesure, il
a fallu dérouler le métre mesureur sur plus de 10 m, cela résultant en apparition d’une fleche (du fait
du poids du métre). Ceci implique nécessairement une forte diminution de précision dans la mesure.
On a donc essayé de minimiser cette fléche, qui se formait a égale distance des 2 extrémités du métre,
en plagant quelqu’un au milieu (qui ajustait la hauteur du meétre de fagon a étre le plus horizontal /plan
possible). Pour autant, cela résulte en une importante erreur et donc incertitude sur la mesure de D.
De fagon relativement arbitraire (erreur majorée et sur-estimée, car difficile & évaluer précisément), on
considérera que cela résulte en une incertitude de £+ 3.0 cm.

On obtient alors une incertitude totale de £ 3.2 e¢m.

e) Calcul de l’incertitude sur c

On récapitule ’ensemble des incertitudes considérées :

A(As') = £ 0.02 mm
A(w) =+ 1.5 tours.s~!
A(A)=A(B) =+ 1.0 mm
A(D)=+32cm

On va maintenant exprimer l'incertitude sur ¢ a partir des incertitudes de mesures identifiées ci-
dessus (on parle de I’évaluation de la propagation d’erreur). On utilise pour cela le calcul différentiel et
plus précisément la différentielle logarithmique de ¢ (pour des incertitudes non aléatoires). On obtient
alors (en reprenant ’équation (I.14)) :

4AD?* 1

IR a) (1.15)

On passe au In pour calculer I'incertitude relative sur ¢ :

Ac=A(

4AD? A (4AD2)+1 (1)
D+B Dy’ T

Inc = In(

= Inc=1In(4) +1n(A) +2-In(D) — In(D + B) — In(a)
On ré-injecte I'expression de a :
Inc=1In(4) +In(A) +2-In(D) — In(D + B) — In(As’) + In(w) (1.16)
On dérive pour obtenir,

doc  GA 0D §(D+ B) §(As)  w

C AT D T D¥B Ay T w
sc SA _ D 4D 5B S(As)  dw
“ A" D " DiB D+B Ay T w (L.17)

On se place alors dans le cas le plus défavorable (ot toutes les erreurs s’ajoutent) et on obtient
I’expression avec les incertitudes :
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" TA 2D T B DB JAs]
Ac AA 2 1 AB A(As’) Aw
ST =TC 4 AD (e + + + = 118
o T D T ore) T T Ay el (1.18)

On reprend maintenant les valeurs d’incertitudes déterminées plus tot (prises dans les unités adé-
quates, cf équation (I.14)) et on prend pour |As’| la valeur moyenne de y déterminée pour la série 1
(on néglige les variations de 7 entre les différentes séries de mesures pour le calcul d’incertitude sur
¢, car cela ne changerait de toute facon que trés peu la valeur de Ac : différence invisible aux chiffres
significatifs pres) :

As’ 7
|As’| = [y | et par définition de a, | |w| = AT _ 5l
la| — a

(cf FIGURE 6 pour les valeurs moyennes).

On calcule alors I'incertitude relative de ¢ (avec le a de la série 1 : encore une fois, on néglige les
écarts entre les a de chaque série au vu de leur influence sur le résultat final) :

On peut exprimer I'incertitude sur ¢ en prenant comme valeur de référence ¢, la valeur moyenne de
c sur 'ensemble des 3 séries de mesures. On obtient alors :

[Ac=+5134933 m.s”'|

f) Conclusion de ’exploitation des données

Le résultat final est donc le suivant (moyenne des 3 séries de mesures) :

lc= (3,09 £ 0,06) - 10° m.s~!

(on arrondit toujours 'incertitude finale a 'unité supérieure et on porte évidemment attention au
nombre de chiffres significatifs).

Connaissant aujourd’hui la vitesse de la lumiére de fagon bien plus précise, on peut remarquer que
la premiére série de mesures semble étre la plus précise :

\cl — (3,01 £ 0,06) - 10° m.s~"

Cette série méne en effet & une valeur de c tout a fait acceptable, car la valeur connue et admise
aujourd’hui (2,99792458.10% m.s~!) est alors bien comprise dans notre intervalle de confiance.

Les 2 autres séries s’écartent en revanche un peu trop de la valeur théoriquement attendue. On
peut peut-étre justifier cela par un défaut de vue des deux autres expérimentateurs (pour qui les séries
de mesures de As’ seraient légérement décalées de la réalité par exemple) ou par un trés léger décalage
du montage, bien que nous ayons fait trés attention a ne pas toucher a ce dernier (ou méme a la table
sur laquelle il était disposé et installé).
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3 Remarques et Observations sur la Manipulation

Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-
pulation mise en oeuvre.

e Tout d’abord, nous avons choisi de réaliser la manipulation dans le noir de fagon & mieux vi-
sualiser le faisceau et donc la tache que nous cherchions a aligner sur le réticule pour mesurer
le décalage As’. En effet, une meilleure vision induit une meilleure précision dans la mesure.

e On aremarqué qu’en se concentrant sur la tache, on la distinguait de moins en moins bien au fur
et & mesure que notre oeil s’habituait a la luminosité de I'image observée par l'intermédiaire de
P’oculaire du microscope de grandissement. Résultat, au bout d’environ 1-2 secondes, il devenait
difficile d’identifier la tache rouge formée par le laser. Pour palier a ce probléme, nous alternions
un regard dans Poculaire de 2 secondes (vision de prés) avec un regard autour de nous (vision
de loin) de fagon & ne pas laisser notre oeil s’habituer a la luminosité de Poculaire. De 13, on
pouvait mieux distinguer le faisceau et donc mieux l'aligner sur le réticule.

o Il existait également un autre facteur qui induisait une mauvaise visibilité du faisceau. En effet,
nous avons constaté que plus la vitesse de rotation du miroir tournant était importante, moins
la tache & aligner avec le réticule était visible. Ceci peut s’expliquer par la dispersion de la
lumiére dans la salle du fait de présence de poussiére dans l'air par exemple. Une augmentation
de la vitesse de rotation du miroir limitant alors la "quantité de lumiére réfléchie" ou plutot
I'intensité lumineuse du faisceau réfléchi.

e Une bonne illustration de ce dernier point est d’ailleurs le fait que nous n’avons pas pu réaliser
la mesure & 1500 tours.s !, car le faisceau n’était plus discernable/visible. On ne pouvait ainsi
pas mesurer As’ (impossible de placer la tache alors non visible sur le réticule).

e Une ultime remarque que nous pourrions faire concernerait ’amélioration de cette manipula-
tion. On peut en effet remarquer avec ’équation (I.18) qu’augmenter la distance D pourrait par
exemple permettre une meilleure précision (on diminuerait ainsi I'incertitude relative sur cette
mesure). De plus, 'incertitude sur D ayant un poids considérable dans celle de ¢ (elle représente
plus de la moitié de I'incertitude sur ¢ : sur les 1,66 % d’incertitude relative, 0,9 % proviennent
directement de l'incertitude sur D), il serait bon de trouver un moyen/outil plus précis pour
mesurer la distance D (mesure laser par exemple : méthode qui nécessite de connaitre ¢, i.e on
tourne en rond).
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4 Annexe

Série 2 : As' = f(w)

11.6

y =0.0002x + 11.333

=
2
= |
< x s' (um)
11.1
11
-1500 -1000 -500 0 500 1000 1500
w (tours/s)
FIGURE 7 — Graphe de As’ = f(w) pour la série de mesures 2 (Arnaud)
Série 3 : As' = f(w)
11.60
11.50
11.40
—g y =0.0002x + 11.326
2
= X 5" (m)
1110
11.00
-1500 -1000 -500 0 500 1000 1500

w (tours/s)

FIGURE 8 — Graphe de As’ = f(w) pour la série de mesures 3 (Ewan)
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Deuxiéme partie

Détermination de la constante de

gravitation a ’aide de la balance de
Cavendish

Photo du montage utilisé (tableau mural ou se réfléchit le laser non visible sur la photo)
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1 Principe de la Manipulation - Balance de Cavendish

1.1 Description de ’Expérience

L’expérience de Cavendish est une expérience historique de la physique qui a initialement permis
d’estimer la masse de la Terre.

Cette expérience porte le nom de son inventeur, le physicien britannique Henry Cavendish qui a
lui-méme réalisé cette expérience a la fin du XVIIIéme siécle a I'aide d’une balance de torsion, la bien
connue balance de Cavendish.

Il faut cependant noter qu’a I’époque, Cavendish s’intéressait a la masse de la Terre et non a la
constante de gravitation. La méthode qui a permis de déterminer G a en réalité été développée au
XIXeme sieécle par Charles Vernon (entre autres), mais elle est tout de méme appelée "méthode de
Cavendish".

Dans ce TP, on s’intéressera d’abord & la constante G et seulement ensuite & la masse de la Terre
(et celle du Soleil).

écran papier

\ laser

FIGURE 9 — Schéma du montage expérimental incluant le dispositif optique (laser, miroir et écran)

Principe de fonctionnement du montage

Le montage (voir FIGURE 9) se compose simplement d’un pendule de torsion ou une barre appelée
fléau est suspendue au fil de torsion. Une masse est présente & chaque extrémité du fléau et elles sont
ainsi séparées d’une distance d. On dispose également d’un laser qui nous permettra, via des mesures de
déflexions (et donc d’angles de déviation du pendule), de déterminer expérimentalement la constante
de gravitation G.

Comme nous allons le voir dans I’équation du mouvement (partie 1.2), on va pouvoir déterminer G
en établissant I’équilibre du systéme : équilibre mettant en jeu les forces de torsion du fil et d’attraction
gravitationnelle (+ frottements avec lair). En écartant le systéme de sa position d’équilibre, on va en
effet observer des oscillations amorties (dues aux frottements avec I’air) qui vont progressivement se
resserrer autour de la position d’équilibre (& terme, le systéme retrouvera sa position d’équilibre). La
prise en compte de la force d’attraction gravitationnelle va se faire & ’aide des 2 masses présentent
sur le fléau qui seront alors soumises au moment de torsion qui provient des forces de gravitation
(appliquées a chacune des masses) : cf partie 1.2.
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Pour toute la suite du TP, on va définir divers parameétres que nous serons amenés & utiliser :

- d : la demi-longueur du fléau (5 cm);

- m : la masse des petites sphéres en plomb (15 g);

- I : le moment d’inertie de ’équipage ;

- C : la constante de torsion du fil (de 'ordre de 8,5.107% Nm.rad_,);

- f : le facteur de résistance de l'air & la torsion de la balance;

- M : la masse des grosses sphéres en plomb (1,514 kg) ;

- 0 : la distance initiale entre la grosse sphére et la petite spheére (5 cm);

- s : le déplacement de la petite sphére fixée au fléau sous I'action du couple de gravitation ;

- 5 : I'angle de déviation du fléau soumis a l'attraction des grosses sphéres ;

- Ly : la distance prise selon la direction normale de la balance (donc du miroir) a écran (6,57 m) ;

- X : la distance mesurée sur le mur entre le point d’impact de la normale & la balance et la
position du spot Sy ;

- AS : la déviation du spot laser sur I’écran d’une position d’équilibre a 'autre (position I et IT des
grosses sphéres), AS =51 — Sy;

Protocole expérimental

On note tout d’abord qu’a notre arrivée dans la salle, la balance était restée au repos suffisamment
longtemps pour que le pendule soit & sa position d’équilibre (ce que nous vérifierons d’ailleurs plus
tard, cf partie 2.d). Le "point zéro" avait également été correctement calibré (fil tendu et fléau centré
et paralléle aux parois de verre).

On commence par déplacer le fléau de fagon a initier les oscillations (un expérimentateur balance le
bras auquel les masses sont rattachées a ¢t = 0 s). On notera alors notre premier point de mesure (point
numéro 1 qui figure sur le jeu de données). Ce point servira ensuite de référence pour les mesures de AS.

Pour réaliser les points de mesures (des déflexions), on utilise un faisceau laser qui se réfléchit avec
une incidence relativement faible sur un petit miroir fixé sur le fil de torsion (cf FIGURE 10). De cette
facon, une rotation du fil de torsion entraine une rotation de miroir et ainsi une déflexion du faisceau
vers le mur situé en face (faisceau réfléchi). C’est justement en plagant un écran papier sur ce mur que
I’on pourra relever la position du faisceau dévié toutes les 30 secondes. On pourra ainsi, en prenant
notre premier point comme référence, mesurer les AS.
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source !
lumineuse \

1: premiere position du miroir
2: position aprés rotation d'un angle o
2

FIGURE 10 — Vue de dessus du dispositif avec trajets du faisceau laser incident et des faisceaux réfléchis
sur le miroir aprés déplacement du fléau de la position 1 & 2

Un second expérimentateur placé proche du mur va donc devoir relever la position du laser a
intervalle régulier de 30 secondes : au signal d’un autre expérimentateur possédant un chronométre
(ce dernier prévient autre 5 secondes avant de fagon a ce que tout le monde soit prét une fois arrivé
a 30 secondes). L’idée est ensuite de relever une centaine de positions du faisceau (environ 100 mesures).

On peut noter qu’en réalité, un second faisceau est visible plus bas, mais ce dernier n’importe
pas dans les mesures : il s’agit du faisceau réfléchi par la surface vitrée du carter (il ne servira que de
contrdle pour vérifier que 'angle d’incidence du laser est resté constant tout au long de la manipulation).

Sachant qu’une rotation du miroir d’un angle o engendre une réflexion du faisceau d’un angle 2a,
on obtient un lien entre la mesure de AS sur notre feuille de pointage et 'angle 2« associé. Comme on
le voit FIGURE 10, 'approximation des petits angles donne : AS ~ 2al = 2a = % (on verra par

la suite qu’il nous faut cependant considérer un coefficient de compensation d’erreur de parallaxe).

1.2 Equation du mouvement

On va ici établir I’équation du mouvement du fléau que 'on va évidemment lier au déplacement
AS mesuré sur notre feuille de pointage.
On commence par écrire le théoréme du moment cinétique (ou F' est la force de gravitation) :

O FAF =0 1.1
praid (IL.1)

On va alors comptabiliser et expliciter 3 termes de couple :

- le couple de torsion lié aux forces d’attraction s’exercant entre les 2 masses;
- le couple de torsion du fil (C);
- le couple de frottement di aux frottements entre le dispositif et air.

On notera également § I’angle de déviation du fléau (en prenant comme référence la position
médiane du fleau dans le cas ou les 2 masses seraient absentes).

d(3)
dt

dL «
2 _9F.d—C-Z _ f.
dt d-c 2 f

(I1.2)
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On exprime alors F' = st‘gm et L = Iw = 2md? - d(d%) ol I est le moment d’inertie du dispositif
rattaché au fil de torsion (dispositif mobile par rapport au support). On notera que l'on approxime
la valeur de I en se plagant dans le cadre de I'approximation de masses ponctuelles (question de
simplification des calculs) :

d?(2 GMm e d(5
(3) _,GMm o d(3)
dt? 52 2 dt

On multiplie alors ’ensemble de I’équation précédente par % et on la réécrit de la fagon suivante
(on écrit aussi s comme une fonction de « car c’est bien le cas dans la réalité) :

I (11.3)

d*(a)
dt?

4G M
£ o) (G 4G Mmd

dt I I s(a)? (IL.4)

+

d d

FIGURE 11 — Représentation schématique de la rotation du fléau d’un angle § sous I'action des forces
de gravitation entre les 2 masses. On fait figurer (en grisé) la position médiane du fléau précédemment
évoquée (position de référence o = 0)

En se placant dans I'approximation des petits angles et en utilisant les notations introduites partie
1.1, la FIGURE 11 nous permet d’écrire :

d
a—s:%zs:a—7 (IL.5)

On va alors utiliser le fait que les déplacements du fléau sont relativement faibles par rapport a la
distance d = §d < 0.
On peut donc écrire :

1 = 1 = ! ~ L . (1 + ozd) (IL.6)
o

$2 (U_%dp - 02.(1_%1)2 2

On injecte alors cette expression dans I'équation (II.4) :

L.
a2 T a1 YT T o2 (IL7)

(o

2 4G M
d(a)_'_i.d(a) c 4G md.<1+ad>:0
Comme I = 2md?, on peut légérement simplifier cette expression :
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() f d(a) C 2G M ad)
B +1't+1'a_da2‘<1+>0 (IL8)

On factorise alors par « :

() f d(a) C 2GM 2GM
e +(1_ - )a— (IL.9)

On reconnait une équation différentielle du second ordre avec second membre (et de variable «) :

&+ 2X\¢ + wia = wie (I1.10)
avec : A= i w? = g — LGM wie = LGM
' o 0T \T o3 057 do?

On sait que la solution de ce type d’équation différentielle dépend du signe du discriminant de
son équation caractéristique : A = A\? — w3. Dans notre cas, la balance de Cavendish (i.e le couple
résistant, la constante de torsion C' et le moment d’inertie I) est ajustée de fagon a permettre un régime
pseudo-périodique (A < 0). Cela se vérifiera expérimentalement par la suite puisque ’on observera des
oscillations amorties.

La solution de cette équation est donc de la forme :

2GM

— 1I.11
wio?d ( )

a=AeMcos(wt+¢) +e avec w?=w2 A\ et e=

2 Exploitation des Mesures

a) Acquisition des données expérimentales

La manipulation n’ayant pas pu étre réalisée du fait qu’elle avait été rendue inopérante quelques
jours auparavant, nous avons récupéré le jeu de 85 mesures de AS réalisé par un ancien groupe d’éléves
(il s’agit de la feuille de pointage). Le protocole mis en oeuvre pour l'obtention de cet ensemble de
données étant bien entendu celui décrit partie 1.1. Les mesures des AS seront donc réalisées a ’aide
d’une regle (cf plus loin pour le calcul d’incertitude associé) en prenant comme position de référence
le premier point relevé (on mesure ensuite les écarts entre ce point de référence et chacun des autres
points : on obtient ainsi les valeurs de AS pour chaque valeur de t).

Le jeu de données était donc le suivant :

T | ll\l‘ILLVI N I I e

o 3 Lo £ 59 3] I CraiaT i [
=]
& Js .4114 AL IU;-;L -JCL ‘L _-ﬂ‘* ‘41 13” & elg.!gl‘_ L m\ u\ﬁ-
“ |
5UL l' 5!, k ”IJ!,,, 54 lIL ’I!,L gll‘ xls & % L EURE N
1 | | 3| | | l TER
% 35 2 77 8 32 40 4 w oWy
- // l 4 { s!{ slo Js '~ll ‘l\'*- '!s 'ls
e —————— T T O[T

FIGURE 12 — Jeu de données/Feuille de pointage appartenant & un autre groupe de TP et ayant été
utilisé pour la réalisation du TP (car balance de Cavendish inopérante)

Le tableau de mesures faisant figurer les 85 valeurs de AS pour chaque valeur de ¢ étant particu-
lierement long, il ne figurera pas ici (pas dans cette partie). Cependant, il est disponible en annexe :
FIGURE 18.
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b) Modélisation avec Latis Pro
On va maintenant réaliser plusieurs courbes ainsi qu’une modélisation en utilisant le logiciel Latis
Pro.

Premiérement, on va tracer AS = f(¢) (on reproduit le tableau 17, i.e la FIGURE 18, dans le
tableur de LatisPro). On obtient donc :

Celta 5 en mm

350

300

250

200

150

100

30

DF - = = == = = = = = — - =/ — = - — = - - - = - - - - - tenmin {

& 12 i8 24 20 36

FIGURE 13 — Courbe de AS = f(t) obtenue sur Latis Pro avec le tableau représenté FIGURE 18

On va ensuite utiliser la relation suivante (relation précédemment évoquée dans le protocole expéri-
mental) que 'on rentrera dans la feuille de calcul de LatisPro (on se place dans le cas de I’approximation
des petits angles) :

AS AS
200 = — - =—" I1.12

Le terme kp correspond a la correction de lerreur de parallaxe (le laser incident faisant un angle
non nul par rapport a la normale du miroir, il y a nécessité de corriger cet écart/erreur).

On peut assez facilement exprimer ce coefficient kp et retrouver cette expression de « avec quelques
considérations géométriques (cf FIGURE 14).
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) | position 1
- l@ position 0
&

position 2
: ic'f RN

du bras de la balance

FIGURE 14 — Schéma en vue de dessus et trajets optiques du faisceau laser dans différentes positions

’approximation des petits angles donne :

AS’
tan 2o & 200 = (I1.13)
Or,
/ . Lo
AS"=AS -cosi=AS- T (I1.14)
D’ou,
AS - Ly
Le théoréme de Pythagore donnant enfin L? = L3 + X2, on obtient :
AS - Ly AS L3
20 = 5 =|— -k kp=——— I1.1
o X2 i p avec kp I+ X2 (I1.16)
En récupérant les valeurs de X, et Ly du groupe ayant réalisé le TP, on peut finalement calculer
kp :
Ly =6,5Tm
X0=0,90m

kp = 0,9816 ~ 0,98

On peut ainsi tracer la courbe de o = f(¢) en reprenant ’équation (I1.12) :
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alpha, Modéle de alpha
X107 I

25

20

FIGURE 15 — Courbe de oo = f(¢) obtenue sur Latis Pro avec 'équation (I.12) avec « en radians bien

entendu (LatisPro ne voulait visiblement pas le représenter en ordonnées)

alpha _fet(t) Nom  Valeur Incertitude Actif
Ym |14623E-3 = 82.50E-6
Modéle de alpha |
| Fo 151363 +1.1E6
WodC - m [647026-3 +590.526-6
| ot ( ) - Phi [ 296 001 | V]|

Copier le résultat vers le presse-papier

J

Nouveau Modéle

C ) 1L

Calculer le modéle

( e

[ Eestimer une valeur |

alpha=Yo+Ym*exp(-m*2*pi*Fo*t)*cos(2*pi*Fo*t+Phi)

alpha=15.946E-3+14 623E-3exp(-64.702E-3%2*pi*1.513E-3)*cos(2pi*1.513E-34-2.96)

Ecart Type = 72.839E-6 | |Erreur en X ' [EmreurenY | [cm=19.51

Coefficient de Corrélation = 0.992 | [2126-6 |

|I4s

FIGURE 16 — Paramétres de modélisation calculés par LatisPro pour la modélisation en cosinus amorti

de a(t) (cf plus loin pour la justification des incertitudes considérées)
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On utilise alors LatisPro pour établir une modélisation en cosinus amorti (c¢f FIGURE 15 pour
rendu) pour a(t) (cf expression attendue de «(t) partie 1.2). LatisPro renvoie alors les paramétres de
modélisation avec leurs incertitudes (cf partie 2.f.2 et 2.£.3 pour I'estimation de I'incertitude sur « et t) :

Par identification entre les différents parameétres de modélisation et grace a ’équation de «(t)
(trouvée partie 1.2) et des expressions des parameétres présents dans cette équation, on peut calculer
le terme d’amortissement A (on l'identifie directement dans ’exponentielle de la solution/modélisation
trouvée par LatisPro) :

A=64,702.1072-2-7-1,513.1073 ~ \ 6,151.107* 71 \

De plus, comme on approxime les masses & des masses ponctuelles, on a I = 2md?. D’oi,

f =21 ~|9,226.10"% kg.m®.s |

On peut de la méme fagon obtenir w par son identification dans le terme en cosinus :

w=2-7-1,513107 ~|9,506.10~° rad.s"|

On peut ainsi obtenir la pulsation propre wy et la fréquence propre fy associée :

wo = VT T A2 =|9,526.10~ rad.s"|
fo=52 = ‘ 1,516.107% 57! (ou Hz)

On remarque alors que w = wy. L’erreur relative vaut en effet :

|w — wol

~0,21 %

Au vu de la trés faible valeur de 'erreur relative, on se permettra par la suite de confondre, ou
plutot d’assimiler, la pseudo-période a la période propre du fléau (conséquence : la fréquence f associée
a w, soit Fy sur LatisPro, est quasiment égale a la valeur de la fréquence propre fp).

On peut enfin déterminer la valeur de I’angle a 1’équilibre a, = € ou Y} sur LatisPro. On identifie :

ac ==Yy = 15,946.10 " rad |

c) Calcul de G et C

On dispose maintenant de toutes les valeurs nécessaires au calcul de la constante de gravitation G :

o 2GM — o= wio?ed
- wioid - 2M

(IL.17)

On doit cependant corriger cette valeur d’un facteur kj;o permettant de considérer le moment de
la force d’attraction entre les 2 masses m et M du dispositif. La valeur donnée dans notre cas était :
ka2 = 1,083. On a alors :

wioled
G = k- —2 IL.18
M2 —orr (I1.18)
On peut ainsi réaliser 'application numérique et obtenir notre valeur de G :
|G~ 6,47110 1 mP.kg s~ (IL.19)

On obtient donc une valeur relativement proche de la valeur actuellement admise de G (Gy, =
6,6742.10~ 1 m3.kg=t.s72).
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Plus précisément, on obtient une erreur relative de :

|G — G
— " ~3,04 %
Gin R
On passe maintenant au calcul de la constante de torsion C. On sait que :
Cc 2GM 2GM
2 _ _ 2

On obtient ainsi :

|0~6,92310"° Nm.rad ™|

La valeur constructeur étant de Coonst = 8,5.1072 Nm.rad—!, on observe alors une erreur relative
de :

|C - Cconst‘
Oconst

On peut alors signaler que 'erreur commise est assez importante. Ces écarts peuvent se justifier de
différentes fagons, d’une part du fait de 'usure du fil (la valeur constructeur était probablement vraie
en sortie d’usine, mais plus maintenant : avec le temps le fil se dégrade), mais aussi de par le cumul
(et donc la propagation) des incertitudes de mesures.

~ 18.6 %

d) Estimation de la distance entre les masses M et m a 1’équilibre

On note s(a) = s(ae) = b et on reprend ’équation (I1.4). On peut alors exprimer «. (& 'équilibre

donc) comme suit :

C 4G Mmd 4G Mmd
S e —  —— =0 <— = —  ——— 11.21
1'% T Sa)? T T e (I1.21)
Sachant que I = 2md? <= m = 2T112’ on peut réécrire :
2-GMI 1
e =—7 "5 I1.22
“ cd P (IL.22)

Si on reprend maintenant les expressions de a. et de wy établies pour 1’équation (II.10), on a :

2GM 2GM L.2GM 2-GMI 1
ae = = = = .
wg(ﬂd (C—Qgé‘/[>02d I'<C_2Gf£\/[)0'2d Cd <1_I.2G§\4)02
I o C I o* C o*

On identifie alors le b de ’équation (II.22) avec le dénominateur de 1'équation (II.23) pour obtenir :

(11.23)

1 2GM

11.24
e (I1.24)

b=0o-4/1

On peut ainsi calculer la valeur de b = s(a.) :

b=14,957.10 2 m = 4,957 cm|

On note alors que o &~ b avec un écart relatif de seulement :

=0,86 %

bl
o

On peut alors remarquer que la distance initiale entre les sphéres est en fait la distance a I’équilibre
entre ces 2 derniéres. Autrement dit, a t = 0 s, les sphéres étaient a ’équilibre (sans surprise).

27



Université de Poitiers

IT - Détermination de la constante de gravitation - Balance de Cavendish

e) Pesée des astres
On va ici chercher & déterminer, & ’aide de nos mesures, la masse de la terre My, puis a l'aide de la

3éme loi de Kepler, celle du Soleil Mg.
On reprend tout d’abord 1’équation (I1.22) dans laquelle on exprime I = 2md? (on la réarrange
(I1.25)

également légérement au passage)
Ca.  GMm
4d b2

L’idée de Cavendish que nous allons remettre en oeuvre ici consiste & comparer (mathématiquement,
(11.26)

a faire le rapport) la force F' a celle exercée par la Terre sur la masse m (force de gravitation). Autrement

dit, on cherche & comparer F' avec le poids de la masse m : P = myg.
Ry

Le rapport des 2 forces donne :
F  Ca. S¥™  GMm
mg  4mgd G]‘ggm b2 GM7rm

T
Que l'on peut simplifier comme suit :
Ca, M R?
T _ T (11.27)
dmgd  Mrb
(11.28)

On peut alors exprimer la masse de la Terre :
4mgM R3.d
M =
T Ca,b?

On prendra alors g = 9,81 m.s™2 et Ry = 6,37.10° m (on rappelle également que a, = ¢

Mr ~ 6,55.10°" kg|

15,946.1073 rad) :
A noter qu’on a choisi de prendre la valeur de C' calculée a partir des valeurs expérimentales (la

valeur de My calculée avec la constante constructeur est trés légérement plus éloignée de la valeur

théorique).

Mrnl g 68 %

La valeur théorique (admise aujourd’hui) étant de My 4, = 5,972.10** kg, on a un écart relatif de :

M ¢,

Ce qui reste significatif, mais non surprenant au vu des incertitudes de mesures que 'on va estimer

En assimilant la Terre a une sphére de rayon Ry, on peut aussi calculer sa masse volumique pr :
(11.29)

plus loin.

Mr

T = 7
3T Ry

= = 6,05.10° kg.m ™ = 6,05 g.cm™®

3, on obtient un écart relatif de :

Connaissant la valeur théorique pr ¢, = 5,517 g.cm™
lor —pranl g 66 9%

PT,th
A 10% preés, on a donc une valeur de masse volumique voisine de la valeur admise aujourd’hui.

Passons maintenant au calcul de la masse du Soleil.
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On va appliquer la 3éme loi de Kepler qui s’écrit ici :

a}  G(Ms + Mr)

TS s (11.30)

ou T est la période de révolution de la Terre autour du Soleil et ar le demi grand axe de la trajec-
toire elliptique (ici assimilé au rayon d’une trajectoire circulaire).

A noter que comme il s’agit d’un systéme planéte/étoile, on pourrait négliger la masse de la Terre
devant celle du Soleil. Mais mettons-nous & la place de Cavendish qui ne connaissait pas encore la
masse du Soleil (c’est justement le but de ce calcul!). Il ne pouvait pas encore faire ’hypothése de
négliger quelque chose qu’il ne connait pas devant la masse de la Terre. Dans un souci de complétude,
on fera les 2 calculs, I'un en négligeant la masse de la Terre devant celle du Soleil, 'autre sans faire
cette approximation. On comparera ainsi les 2 résultats.

4 2.3 4 2.3
_rar My ou (si My négligé devant Mg) Mg = gj?QT

Mo =
5T GT?

(I1.31)

On prend alors ar = 1,5.10'" m et T = 365,24 jours = 3,16.107 s, on obtient ainsi la méme
valeur avec ou sans l'approximation sur la masse de la Terre (aprés arrondi au bon nombre de chiffres
significatifs) :

\MS —92,1.10%° kg\

La valeur aujourd’hui admise étant de Mgy, = 1, 989.10%Y kg, on observe un écart relatif tout a
fait acceptable de :

f) Estimations des incertitudes de mesures

On commence par définir les incertitudes de mesures sur chacune des données expérimentales :

1) Sources d’incertitude sur AS

On considére tout d’abord la plus petite graduation présente sur la régle graduée (utilisée pour la
mesure de AS) : + 1 mm (on considére alors une incertitude de £ 0.5 mm).

De plus, on considére I'extrapolation de l'oeil liée & la lecture de la graduation sur la régle, soit une
incertitude supplémentaire de £+ 0.5 mm.

On obtient alors une incertitude totale de + 1 mm.

2) Sources d’incertitude sur ¢

La principale source d’erreur sur cette mesure est le temps de réaction de ’expérimentateur. En réa-
lité, il s’agit méme du cumul de 2 temps de réaction : celui de ’expérimentateur qui a le chronométre
en main et celui du second manipulateur qui reléve la position du faisceau sur la feuille de pointage ou
écran papier. Le temps de réaction moyen de I’étre humain étant difficile & évaluer dans le contexte de
I’expérimentation, on considérera un temps moyen de réaction de 1 seconde que ’on majorera volon-
tairement & 2 secondes (vu les difficultés d’estimation de cette valeur) pour chaque expérimentateur :
+ 4 s.

On va cependant noter quelque chose d’important ici. Le temps de réaction ou plutét le temps de

réponse/action (c’est ¢a qui nous intéresse ici) correspond a un paramétre trés flou, on devrait en effet
en distinguer plusieurs types. En particulier, le temps de réponse pour la lecture d’un chronométre est
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trés différent du temps de réponse pour I’écriture & la main. En médecine, on distingue par exemple les
temps de réaction simple, semi-complexe et complexe (correspondant a différents types de stimulations
et réponses). Par exemple, pour 'expérimentateur annongant le temps affiché au chronomeétre, le temps
de réaction correspondant serait en moyenne de 168 ms! Bien entendu, il faut aussi considérer le temps
d’action (pour annoncer oralement "top") ce qui ameéne la durée a considérer & environ 400-600 ms
(considérer 1 seconde est donc déja trés largement surestimé). En opposition a cela, le temps d’action
de I'expérimentateur relevant la position du faisceau est lui bien supérieur et atteint facilement 1, voire
2 secondes (2 au trés grand maximum!). Il est donc essentiel de signifier que ce que l'on considére ici
est bien davantage le temps d’action/réponse que le temps de réaction qui est lui de 168ms pour chacun
des manipulateurs.

On comptera donc 4 secondes d’incertitude sur ¢ (ce qui est déja une trés large majoration/surestimation
de la réalité : environ 2 secondes si l'on se référe aux sources médicales) : Incertitude considérée : + 4 s
(mieux vaut avoir une incertitude surestimée que I'inverse, d’ou ce choix).

A noter également que c¢’est donc cette valeur de At qui a été renseigné sur LatisPro (cf FIGURE
16).

3) Calcul d’incertitudes sur kp et «

On commence par rappeler que :
AS L2

[ ——— t kp—=_——0 _
oL, P TPTrL X2

On calcule alors 'incertitude sur kp :

(67

Inkp =2In Lo —In (L2 + X?) (11.32)

On dérive pour obtenir,

Skp 0Ly 6(LE+X3)

kp Lo L2+ X¢

Skp 0L L3 5X3
Lo 0 (IL.33)
kp Lo L2+Xg LI+X

On se place alors dans le cas le plus défavorable (ou toutes les erreurs s’ajoutent) et on obtient
I’expression avec les incertitudes :

Akp AL ALZ AX?

|kp| Lol L3+ X§|  |L§ + X3
Ak 2AL 2ALg - |L 2A X, - | X
kel Lol LG+ Xl [Lg+ Xgl

En reprenant les valeurs de Ly et X et en considérant les incertitudes fournies (le TP n’ayant pas
pu étre réalisé, toutes ces données nous ont été fournies par notre professeur : issues d’un autre groupe
de TP), on a :

ALy =0,01m
AXy=0,1m
Akp =9,92.1073
(on a considéré des incertitudes sur X et Ly telles que correspondantes a des mesures réalisées a
la régle graduée, respectivement au dm et au cm : on va de toute fagon voir que l'incertitude sur kp

n’aura que peu d’influence sur celle de «).

Calculons maintenant 'incertitude sur « :
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AS

Oé:m

ckp=Ina=InAS+Inkp —1In2L, (I1.35)

On dérive et on obtient :

da 6(AS) Skp  6(2Lg)

—_— = — - — I1.36

« AS + kp 2L0 ( )
Comme pour kp, on se place alors dans le cas le plus défavorable (ou toutes les erreurs s’ajoutent)

et on obtient I'expression avec les incertitudes :

Aa  A(AS)  Akp  A(2Lg)

Tof = Tas] el T Lol

Ao A(AS)  Akp AL

== _ 11.37
ol = 1A T Thel T Tl (IL37)

On prend alors la valeur moyenne de « et AS (obtenue avec LatisPro) pour le calcul d’incertitude :

_ [A(AS)  Akp AL0>
Aa = . -~
o =lal (|AS| kel " TLol

(11.38)

On calcule ainsi 'incertitude sur « :

|Aa=2,1210" rad|

C’est bien cette valeur que ’'on rentrera dans LatisPro pour que le logiciel calcule/estime les incer-
titudes sur les paramétres de modélisation.

Notons que comme on dispose d'un large échantillon de valeurs de « (85 valeurs), on peut évaluer
I’incertitude sur la valeur moyenne comme suit :

Aa_
N

Toutes les autres incertitudes associées aux parameétres de modélisation sont données/estimées par
LatisPro, directement a partir des incertitudes sur « et t que nous venons d’établir. Celles sur G et
C font l'objet de la partie suivante et celles associées & la pesée des astres feront ’'objet d’une partie
ultérieure.

2,30.107° rad

g) Calcul des incertitudes sur G et C

On va maintenant s’intéresser au calcul des incertitudes sur G et C. Commengons donc par l'incer-
titude sur G. Pour cela, on utilise comme d’habitude la différentielle logarithmique (c’est la méthode
qu’on a toujours utilisée jusqu’a lors, y compris dans la partie I). On reprend 1’équation II.18 (on
compose avec In) :

InG=1In(1,083) +2lnwy +Ind+ 2Ino +Ine —In2 —In M (I1.39)

On dérive pour obtenir,

oG dwg  od oo b OM
ek el v (11.40)

On se place dans le cas le plus défavorable (ou toutes les erreurs s’ajoutent) et on obtient :

AG  2Awg n Ad n 2A0 i Ae n AM
GI wol  fdl ol el [M]

Pour les valeurs d’incertitudes sur d, o et M, on les détermine & partir de la précision avec laquelle
ces paramétres sont donnés (a défaut de les avoir mesurés nous-méme). On considére que d et o ont
été mesuré a la régle graduée au mm (on considére alors les mémes sources d’incertitudes que pour
AS). M est supposée mesurée au gramme prés, donc on a :

(I1.41)
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Ad = 0,001 m
Ao = 0,001 m
AM = 0,001 kg

Awg =2,2.107% rad.s!
Ae =1,962.107° rad

Les 2 derniéres valeurs d’incertitudes sont directement données/estimées par LatisPro : on rappelle
qu’au vu de I’écart entre w et wp, on considére que ces derniers sont égaux.

De 14, I'incertitude relative sur G est :
AG  2-2,2107% 0,001 2-0,001 1,962.107° 0.001
=2 9 ) ) ) _ 24
|G| 9,526.10—3 + 5.10—2 + 5.10—2 + 15,946.10-3 + 1,514
Notons ici que sur les 6,24 % d’incertitude relative, 6,04 % sont uniquement dus & la contribution

de d, o et a,. Cela signifie que les incertitudes sur wy et M n’influent que trés peu sur celle de G.
En reprenant la valeur de G calculée partie 2.c, on obtient I'incertitude sur G :

AG =4,03810"12 m® kg~1.s7?2
| |

On a ainsi :

G =(6,471+0,404) - 10" m® kg .52 |

Remarquons que la valeur théoriquement attendue est bien dans notre intervalle de confiance (i.e
G € [G — AG,G + AG)).

Calculons maintenant de fagcon analogue I'incertitude sur la constante de torsion C.
On repart de équation I1.20 et on obtient finalement (le calcul n’est pas re-détaillé & nouveau, il s’agit
encore et toujours de la méme méthode de calcul) :

AC Al 2Awg (AG AM 3AJ>
— =t T e (11.42)
¢l ] wol Gl M| ol
Que I'on peut réécrire en décomposant I en fonction de m et d :
AC (Am 2Ad> 2Awg (AG AM 3AJ>
— =+ — =+t I1.43
=\l * a1 ) Tl e Pt ol (1143)

En prenant Am = 1.107% kg (on suppose que la masse m a été pesée avec une précision au mg) :

AC

0 ~16,36 % =— AC ==+1,133 Nm.rad™"

Ce qui est énorme, mais pas surprenant puisque le calcul de C nécessite la prise en compte de
quasiment la totalité des incertitudes existant dans le cadre de cette manipulation, y compris celle
déja calculée de G (qui repose elle-méme sur un grand nombre de paramétres expérimentaux possé-
dant une incertitude de mesure). Remarquons qu’outre G, les incertitudes sur d et o ont une trés forte
contribution dans celle de C'.

Il y a cependant une remarque importante a faire ici. Pour tous les calculs d’incertitudes, on a
jusqu’ici considéré le cas le plus défavorable ou toutes les incertitudes s’ajoutaient. En réalité, il est
important de comprendre que certaines incertitudes peuvent se compenser, ce qui n’a donc pas été
pris en compte ici. La valeur ainsi calculée correspond donc & une majoration de l'incertitude réelle.
On peut aisément imaginer que l'incertitude sur G ne va directement s’ajouter aux autres incertitudes
sans la moindre compensation d’erreur (attention ce n’est qu’hypothétique).

Notons cependant que la valeur théorique n’est pas dans notre intervalle de confiance (de peu) :

on peut donc supposer que 'usure du fil de torsion y est pour quelque chose (le fil s’est dégradé et n’a
plus la méme constante de torsion C' qu’en sortie d’usine).
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h) Calcul des incertitudes sur My et Mg

On va maintenant calculer les incertitudes sur Mt et Mg.

Commengons par Mp. On reprend alors ’équation (I1.28) et on utilise la différentielle logarithmique.
On ne détaille plus le calcul, il s’agit toujours de la méme méthode. On obtient donc :

AMr Am  Ag AM  2ARr Ad AC Aes  2AD

SMr _om, 29, 2% e 1.4
]~ T Tt TR T T T T (IL44)

Sans faire ’application numérique, on comprend déja que l'incertitude va étre trés importante, ce
qui peut expliquer le fort écart relatif trouvé sur la masse de la Terre (et donc sur pr) en section 2.e.
En effet, on avait déja obtenu une incertitude relative sur C' de plus de 16%. On remarque donc que
I'incertitude relative finale va étre relativement importante majoritairement du fait de la contribution
de l'incertitude sur C.

On pourrait alors considérer les incertitudes suivantes :

Am = 0,001.10~3 kg
Ag = 0,01 m.s2
AM = 0,001 kg
ARy =0,01.10° m
Ad = 0,001 m

Ae = 1,962.10~° rad
Ab= Ao = 0,001 m

(on reprend les incertitudes déja justifiées que l'on compléte avec les incertitudes sur g et Ry que
lon défini a partir de la précision donnée dans 1’énoncé du TP : on pourrait méme faire le choix de
négliger certaines d’entre elles dans la mesure ot certaines sont aujourd’hui accessibles avec une grande
précision).

On obtient alors une incertitude relative sur Mz de :

=22, 97%
| Mr| ’

On trouve donc quelque chose d’énorme (comme dit partie précédente, on rappelle qu’on s’est déli-
bérément placé dans le cas le plus défavorable qui correspond en réalité a une majoration de lerreur).
On pourrait effectuer une seconde estimation de cette incertitude en négligeant par exemple les incer-
titudes des parameétres que I'on connait aujourd’hui avec une grande précision. A titre informatif, on
fait donc un calcul de I'incertitude sur M en négligeant celles sur g et Ryp.

On obtient alors une valeur de | 22, 56% | On remarque donc que les 2 incertitudes négligées n’avaient

que trés peu d’influence dans le calcul initial. Cette approximation ne change donc pas grand-chose au
résultat d’incertitude.

On pourrait alors faire un troisiéme calcul d’incertitude (approché), si on se plagait dans une
situation ou ’on utiliserait la valeur constructeur de C. L’incertitude relative sur C serait alors drasti-
quement réduite : considérons par exemple AC = 0,1.107° Nm.rad~! (au vu de la précision annoncée
par le constructeur). On considére a nouveau : Ag = 0,01 m.s~2 et ARy = 0,01.10% m.

On obtient alors une valeur d’incertitude relative sur My de | 7,79% |.
Si on détaillait le calcul, on observerait alors que c’est 'incertitude sur b, i.e sur o, qui a le plus

d’influence. A elle seule, elle compte pour 4% de l'incertitude relative sur Mr et celle sur d compte
elle pour 2% (toutes les autres incertitudes ont donc une contribution relativement minime).
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La conclusion sur ce résultat reste donc, malgré les approximations successives, que 'incertitude
relative sur Mt est conséquente, ce qui peut expliquer le fort écart relatif précédemment observé entre
la valeur de M7 mesurée et sa valeur théorique.

On va maintenant déterminer I'incertitude sur la masse du Soleil Mg.

On reprend donc 'équation (I1.31). On utilise la différentielle logarithmique qui nous donne l'in-
certitude relative sur Mg :

AMS - 3ACLT & 2AT

= _ T il (IL.45)
\Ms|  ar| |G| [T

On considére alors, au vu de la précision des données fournies et utilisées pour le calcul de Mg, les
incertitudes suivantes :

Aar =0,1.10" m
AT =0,01.107 s

En reprenant l'incertitude relative sur G calculée précédemment, on obtient :

AMg
| Ms|

= 26,87%

Notons cependant qu’on connait aujourd’hui les valeurs de ar et T avec bien plus de préci-
sion. La NASA et I'Union astronomique internationale s’accordent aujourd’hui sur les valeurs de
365, 256363051 jours pour T, et 1,00000023 U A pour ar. En négligeant les incertitudes sur ces pa-
AMg
|Ms|

ramétres, on obtiendrait ainsi une valeur bien plus acceptable : = 6,24% | (incertitude relative

sur G).

i) Conclusion de ’exploitation des données

Les conclusions relatives aux résultats obtenus pour G, My et Mg ayant déja été réalisées dans les
sections associées, on se contentera simplement de synthétiser les résultats.

On retrouve donc ci-dessous, une synthése de I’ensemble des résultats obtenus dans le cadre de
cette deuxiéme partie avec leurs incertitudes associées (cf FIGURE 17).

On notera donc simplement que la valeur de G obtenue expérimentalement est tout a fait recevable
(valeur théorique comprise dans notre intervalle de confiance : cf partie 2.g), celle de C' beaucoup moins
au vu de écart relatif de pres de 20% avec la valeur constructeur (cf partie 2.c pour justification de
cet écart).

Pour ce qui est des valeurs des masses de la Terre et du Soleil, la premiére méne & une valeur
fortement impactée par les incertitudes de mesure, la seconde s’avére étre assez proche de la valeur
attendue avec une erreur relative de seulement 3-4% (cf partie 2.h pour plus de détail concernant ces
écarts).

On effectuera également quelques remarques annexes concernant l’expérience mise en oeuvre dans
la partie suivante.
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9,526E-03 2,200E-06
1,516E-03 1,100E-06

1,595E-02 1,962E-05
6,471E-11 4,038E-12
6,923E-09 1,133E-09

6,35E+24

2, 1E+30

3,10E+23

1,3E+29

FIGURE 17 — Synthése de tous les résultats obtenus avec leur incertitude dans le cadre de cette mani-
pulation (voir FIGURE 16 pour les incertitudes sur les parameétres de modélisation supplémentaires)
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3 Remarques et Observations sur la Manipulation

Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-
pulation mise en oeuvre.

e Commencons tout d’abord par notifier que le dispositif utilisé pour 'expérience (la balance de
Canvendish) est trés sensible aux phénomeénes de vibrations. En particulier, de trés faibles per-
turbations vibratoires (mouvements des expérimentateurs, courants d’air, bruit environnant...)
peuvent rapidement avoir un impact notoire sur les mesures et donc sur la valeur finale de G. Et
c’est d’ailleurs pour cela qu’il a fallu éviter tout contact avec la table sur laquelle était disposée
la balance de Cavendish.

e Un autre aspect limitant que 1’on retrouve d’ailleurs dans les incertitudes est relatif a la mise en
oeuvre du protocole expérimental. En effet, au-dela des limites techniques du matériel, il y a des
limites liées & I’expérimentateur. En particulier, il faut bien comprendre que relever la position
du faisceau laser & la main sur consigne d’un autre individu lisant un chronométre introduit de
fortes sources d’erreur (outre la précision du tracé).

e De la, on aurait tout intérét a ameéliorer le dispositif en I’automatisant numériquement, de sorte
a ce que les mesures soient ordonnées et réalisées sur consigne d’un ordinateur (ce sera bien
plus précis qu’un "top" annoncé oralement et la position du faisceau pourra également étre
relevée avec davantage de précision). Il serait également intéressant d’améliorer les conditions
d’expérimentation en limitant les vibrations : réalisation de lexpérience dans le vide (auquel
cas, il ne faudra évidemment plus considérer les frottements avec I’air) et dans une zone isolée
avec beaucoup moins de sources de vibrations/perturbations.

e A titre informatif, on peut aussi noter l'existence d’une autre technique plus moderne et sur-
tout plus précise, qui a aujourd’hui remplacé la balance de Cavendish (pour la détermination
de G du moins), & savoir, l'interférométrie atomique. Il s’agit d’'une méthode qui utilise des
interféromeétres atomiques pour mesurer les interactions gravitationnelles entre des atomes ou
des particules.

e Une ultime remarque que nous pourrions faire concernerait les mesures initiales de d, o et M.
En effet, on a constaté partie 2.g que ces valeurs constituent les principales sources d’erreur, que
ce soit sur G ou C (surtout les deux premiéres). Il semblerait donc bon de mesurer ces valeurs
avec davantage de précision, de facon & réduire les incertitudes associées. Pour cela, on pourrait
utiliser une balance plus précise pour la mesure de M (que l'on avait ici considérée précise au
gramme) et un dispositif de mesure laser pour celles de d et o (ici considérées comme étant
mesurées a la régle graduée au mm).
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4 Annexe

Foints Dela 5 t Points Delta S t Points Delta 5 t
m s n° 38 0,239 m 1110°s n° 76 0,263 m 2250 s
1 0m 0s n® 39 0.214m 1140 s n° i 0,265 m 2280 s
e 2 25 mm s n® 40 0,189 m M70s n® 78 0,266 m 2310 s
ne 3 &7 mm 60 s n° 41 0,17 m 1200 s n® 79 0,257 m 2340 s
n* 4 0,114 m o0s n° 42 0,152 m 1230 s n" 80 0,252 m 2370 s
n* 5 0.171m 120s n° 43 0,14 m 1260 s n® 81 0241 m 2400 s
n° 8 0,227 m 150 s n° 44 0,14 m 1290 = n® 82 023m 2430 s
n*7 0.278 m 180s n® 45 0,136 m 1320 s n" 83 0218 m 2460 s
e 8 0.32m 210s n° 46 0,144 m 1350 s n® 84 0,207 m 2490 s
n* g 0358 m 240s n® 47 0,158 m 1380 s n° 85 0,196 m 2520 s
n® 10 0.376 m 70s n°® 48 0175 m 1410 s
n® 1 0.2382m 300s n° 49 0,193 m 1440 s
n* 12 0,376 m 330s n® 50 0.213m 1470 s
n® 13 0.38 m 360s n® b1 023 m 1500 s
n® 14 0.332m 90 n® 52 0,249 m 1530 s
n* 15 0.283m 4205 n® 53 0,264 m 1560 s
n® 16 0.248m 450 s n° 54 0.272m 1590 s
n® 17 0.211 m 480s n® 55 0.275m 1620 s
n* 18 0.173m 510s n® 56 0276 m 1650 s
n® 10 0,14 m 540s n® 57 0,269 m 1680 s
n® 20 0.114 m 570s n° 58 0,258 m 1710 s
n® 21 0.1 m 600s n 59 0241 m 1740 s
n® 22 85 mm 830s n® &0 0,223 m 1770 s
n® 23 g8 mm 660 s n° &1 0,205m 1800 s
n" 24 0.112m 600 s n° 62 0,184 m 1830 s
n® 25 0.128m T20s n° 63 0,166 m 1860 s
" 26 0.156 m 750 n® 64 0,15m 1890 s
n® 27 0.188 m 780s n® 65 0,139 m 1920 s
n* 28 0.222m 810s n° 66 0.135m 1950 s
n° 20 0.254 m 240s n° 67 0,138 m 1980 s
n® 30 0.278 m 870s n° 68 0,145 m 2010 s
n® 31 0.301 m 200 s n° 69 0,157 m 2040 s
n® 32 0.315m 930 s n° 70 0,175 m 2070 s
n® 33 0.318m 260 s n® 71 0,194 m 2100 s
n® 34 0.316m 900 s n® 72 0212m 2130 s
n® 35 0.308 m 1020 s n* 73 0.23Tm 2160 s
n® 36 0.28 m 1050 s n® 74 0,246 m 2190 s
n® a7 0.288 m 1080 s n' 75 0,256 m 2220 s

FIGURE 18 — Tableau représentant I’ensemble des mesures de AS & chaque instant ¢
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Troisiéme partie

L’effet photoélectrique : mesure de h

vl - V== =
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= = g N

Photo du montage utilisé (cellule photoélectrique a gauche et lampe & vapeur de Hg & droite)

38



III - L’effet photoélectrique : mesure de h Université de Poitiers

1 Principe de la Manipulation - Effet Photoélectrique

1.1 Description de ’Expérience

L’effet photoélectrique, phénomeéne crucial dans le domaine de la physique quantique, a marqué
une révolution conceptuelle au début du 20e siécle. Cette découverte fondamentale a jeté les bases
de notre compréhension actuelle de la nature de la lumiére et de la matiére. Avant cette période, la
lumiére était principalement considérée comme une onde, conformément aux travaux de grands physi-
ciens tels que James Clerk Maxwell et Isaac Newton. Cependant, une série d’expériences menées par
divers chercheurs, en particulier Heinrich Hertz, a commencé a remettre en question cette notion établie.

C’est Albert Einstein qui a apporté une contribution révolutionnaire & ce domaine en 1905, dans
I'un de ses articles fondateurs de la physique moderne. A cette époque, Einstein a proposé que la
lumiére pouvait également se comporter comme une collection de particules discrétes, qu’il a appelées
"quanta de lumiére", maintenant connus sous le nom de photons. Cette hypothése audacieuse a fourni
une explication convaincante de 'effet photoélectrique, un phénomeéne observé ou I’émission d’électrons
par un matériau soumis & un rayonnement lumineux ne pouvait étre expliquée en termes de théorie
ondulatoire classique.

Les travaux d’Einstein ont ouvert une nouvelle ére dans notre compréhension de la lumiére et de la
matiére. Cette découverte a non seulement permis de résoudre le paradoxe apparent entre la théorie
ondulatoire et corpusculaire de la lumiére, mais elle a également conduit au développement de la mé-
canique quantique, une théorie révolutionnaire qui régit le comportement des particules subatomiques.

Dans ce contexte historique ot pas moins de 3 prix Nobel ont été attribués (LENNARD en 1905,
EINSTEIN en 1921, puis MILLIKAN en 1923), ce travail pratique se propose d’é¢tudier de maniére
expérimentale l'effet photoélectrique et de déterminer la constante de Planck, une constante fonda-
mentale de la physique quantique qui régit la relation entre I’énergie d’un photon et la fréquence de la
lumiére associée.

FI1GURE 19 — Photo du dispositif complet : cellule photoélectrique & gauche, multimétre au milieu et
lampe & Hg a droite
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Principe de fonctionnement du montage

Le montage (voir FIGURE 19) comporte tout d’abord une lampe & vapeur de mercure haute pression
a ampoule de quartz, de puissance 100 W et délivrant environ 3000 lumens d’éclairage. On place, en
sortie de cette lampe, une lentille ainsi qu’un réseau de diffraction de 600 traits/mm qui nous permet
de faire apparaitre le spectre de cette lampe décomposé sous forme de raies d’émission (autrement
dit, ce réseau fait apparaitre séparément chaque composante monochromatique composant la lumiére
émise par la lampe a Hg) : ¢f FIGURE 20.

)
Ultraviolet K
Violet =\
Blue — ’
Green — \\
Yellow ———— j

2nd and 3rd Order Overlap —~

Green & Yellow Spectral lines
in 3rd Order are not Visible.

FIGURE 20 — Schéma représentant la Lampe & Hg et le réseau de diffraction. On fait également
apparaitre les raies du ler, 2nd et 3éme ordre (uniquement & droite : en réalité, on a une symétrie par
rapport a la raie blanche)

On dispose alors, face & cette lampe, une cellule photoélectrique (globalement isolée de la lumiére
environnante). La photocathode présente dans ce dispositif posséde une trés grande sensibilité aux
rayonnements du spectre visible. De plus, comme cette derniére présente un faible travail de sortie (cf
partie 1.2 pour la théorie), l'effet photoélectrique pourra étre observé. Cette photocathode est égale-
ment protégée des autres sources de lumiére environnantes & I’aide d’un tube et d’un masque : cf plus
loin FIGURE 22. On verra plus loin que I'on utilisera également des filtres supplémentaires pour sélec-
tionner certaines raies d’émissions seulement et s’affranchir de toute une partie du spectre. On utilisera
aussi un filtre pour filtrer I'intensité lumineuse de la lumiére arrivant sur la cellule photosensible.

Le dispositif en question est également construit de fagon & ce que I’on puisse mesurer le potentiel
d’arrét Vi (valeur du potentiel de ’anode nécessaire pour arréter ces photoélectrons, et donc annuler
le courant I dans le circuit). Ce dernier résulte ici de la charge d’un condensateur par le photocourant
(voir FIGURE 21).

Notons qu'il est donc important d’avoir en téte le fait que 'on ne mesurera pas directement (au

voltmeétre) le courant photoélectrique, mais bien une valeur de tension Vi qui correspond en réalité
a la tension de sortie d’un amplificateur opérationnel de trés haute impédance d’entrée et de gain unité.

40



III - L’effet photoélectrique : mesure de h Université de Poitiers
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FIGURE 21 — Schéma du circuit électrique (’AOP ne figure pas) du dispositif photoélectrique utilisé
pour les mesures de V;

On va donc voir partie suivante que la constante de Planck nous sera accessible par 'expérience
en utilisant un voltmeétre pour mesurer le potentiel d’arrét pour plusieurs longueurs d’onde (lumiére
incidente, i.e raie d’émission, sur la cellule photoélectrique).

Protocole expérimental

On va donc utiliser un multimétre configuré en voltmétre (en DC : Direct Current, i.e courant
continu) que l'on raccorde au dispositif contenant la cellule photoélectrique pour mesurer ces fameux
potentiels d’arréts. Pour cela, on va placer la lampe et la cellule photoélectrique de fagon a ce que cette
cellule regoive spécifiquement une raie de couleur bien définie. Pour chaque raie et donc pour chaque
composante monochromatique, on relévera alors la valeur du potentiel d’arrét associé.

Expérimentalement, on verra que ’on distingue assez clairement 5 raies colorées : une jaune, une
verte, une indigo, une violette et une a la limite de I'ultraviolet. Plus exactement, on retrouve ce schéma
de fagon symétrique de chaque coté de la normale au réseau de diffraction (et lentille). Ce schéma a
5 raies se répéte également plusieurs fois de chaque coté : on parle des spectres d’ordres 1, 2, 3... (cf
FIGURE 20).

On ne s’intéressera dans notre cas qu’aux raies d’ordres 1 et 2 (ce choix sera justifié plus loin). No-
tons également que pour les raies verte et jaune, on utilisera un filtre adapté permettant de ne garder
que la raie souhaitée. En effet, les raies jaune et verte de 'ordre 2 viennent se superposer avec les pre-
miéres raies de 'ordre 3, il est donc nécessaire de filtrer la lumiére incidente (2 la cellule photosensible).

On réalise alors 2 expériences :

e La premiére consiste a la mesure du potentiel d’arrét pour chaque raie d’émission (intensité lu-
mineuse de 100%, i.e lumiére non filtrée). On aligne donc successivement la cellule avec chaque
raie du premier et second ordre (alignement avec la fente), a gauche puis a droite. On obtient
alors 20 valeurs pour chaque série de mesures et on réalise 3 de ces séries de mesures. On note
ici que l'on ne considérera pas 'ordre 3 car les raies ne sont tout simplement pas discernables
a loeil nu (d’autant plus avec la lumiére parasite environnante) : ¢’est méme déja limite pour
certaines du second ordre. Une mesure consiste & placer correctement la raie sur la cellule pho-
toéletrique, on replace alors le tube en position fermée, on appuie sur le bouton "PUSH TO
ZERO" qui remet a zéro la valeur de V; et on attend que la valeur de V; affichée par le mul-
timeétre se stabilise sur une valeur que 1’on pourra finalement relever. On pourra alors, comme
on va le voir partie suivante, déterminer la valeur de h.
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Window to
White Photodiode
Mask

White
Reflective
Mask
/ Light Shield
(shown tilted to
Base Support Rod the open position)

FIGURE 22 — Schéma représentant le dispositif & cellule photoélectrique avec ses différents composants,
dont le tube de protection en position ouverte

e La seconde expérience cherche cette fois-ci & étudier I'influence de l'intensité lumineuse sur ce
potentiel d’arrét V5. Pour cela, on cherche & chronométrer le temps nécessaire pour que le po-
tentiel affiché par le multimétre se stabilise aprés que 'on ait relaché le bouton "PUSH TO
ZERO". Autrement dit, on mesure le temps de charge du condensateur présent dans le dispo-
sitif photoélectrique. On mesurera cette valeur a saturation du potentiel pour plusieurs raies
monochromatiques. Dans notre cas, on a choisi les raies les plus distinguables et éloignées les
unes par rapport aux autres, a savoir : le vert, 'indigo et le violet/UV (cf FIGURE 23 pour
les longueurs d’ondes associées). Ces valeurs seront mesurées pour différentes intensités lumi-
neuses, intensités que 'on modulera a l'aide d’un filtre magnétique de transmission variable
(100%, 80%, 60%, 40% et 20%) que lon placera/décalera selon l'intensité souhaitée. A noter
qu’au vu de la dispersion des mesures (on verra en effet que ces mesures permettent davantage
I’identification d’une tendance que 1’établissement d’un modéle mathématique), on répétera les
mesures & 3 reprises pour chaque raie et pourcentage de transmission.

Elément A (nm) Couleur Intensité
365,02 uv forte
Mercure (Hg) 404,66 violet faible
435,83 indigo -violet forte
546,07 vert forte
576,96 Jjaune forte
579,07 jaune forte

FIGURE 23 — Tableau donnant les longueurs d’ondes associées & chaque composante monochromatique

de la lampe a mercure (i.e a chaque raie)
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1.2 Effet Photoéletrique - Théorie

D’aprés les travaux d’Einstein sur l'effet photoélectrique, il est établi qu'un rayonnement de fré-
quence v est constitué de photons (historiquement, il s’agit des fameux "quantas"). Chacun de ces
photons posséde une énergie F, définie comme suit (on parle d’'un quantum d’énergie) :

ol h est la constante de Planck (I11.1)

Cette interprétation du rayonnement implique des comportements différents de ceux prévus par le
modéle ondulatoire qui suppose une distribution continue de ’énergie. Un quantum d’énergie compo-
sant un rayonnement peut avoir une énergie relativement importante (selon la fréquence v du rayon-
nement) devant celle supposée d’un rayonnement représenté par un modéle ondulatoire (flux continu
et constant d’énergie).

En particulier, 'une des conséquences de cette approche corpusculaire sur ’effet photoélectrique
est que le quantum d’énergie associé a une fréquence v peut arracher un électron en surface, seulement
a partir d’une énergie seuil appelée "travail de sortie" et notée ®. Autrement dit, 1’électron ne peut
étre arraché que si hv > .

Cette condition correspond physiquement au fait que I’énergie & fournir pour arracher un électron
appartenant a la surface d’un matériau est supérieure a celle le liant a ce matériau/a la matiére (forces
de liaison : Coulomb, élastique...). Notons donc que la valeur de ® dépend du matériau considéré.

Lorsque I’électron est arraché, il gagne une certaine énergie cinétique (qui contribue a son éjection)
qui correspond précisément au surplus d’énergie entre celle du quantum d’énergie et le travail de sortie.

Mathématiquement, on peut donc représenter tout cela en une seule équation simple, I’équation
d’Einstein de 'effet photoélectrique :

‘ hy =&+ ET** | ou h est la constante de Planck (I11.2)

On remarque alors que seule la fréquence v est susceptible de modifier la valeur de E., I'intensité
lumineuse n’ayant donc aucune influence sur cette valeur.

En notant ® = hrg (vg est alors la fréquence seuil permettant arrachement d’un électron a la
surface du matériau considéré), on a (en reprenant ’équation II1.2) :

| BN = hw — hiy | (I11.3)

Ou,
eV, = hv — hwg = h(v — ) | (IIL.4)
On obtient donc ’équation d’une droite affine de pente h et d’ordonnée a l'origine —® = —huy.

Avec la premiére expérience décrite précédemment (partie 1.1), on pourra ainsi remonter expérimen-
talement a la valeur de h (voir partie suivante).

Juste a titre d’exemple, la FIGURE 24 disponible & la page suivante présente ce a quoi cette droite
peut ressembler pour un matériau donné.
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I (eV)

-

rgie cinétique maximum

Ene

#

Fréquence (x 10" Hz)

FIGURE 24 — Graphe de EI"®* = eV, = f(v) pour différents matériaux

2 Exploitation des Mesures

a) Expérience 1 : Relation entre énergie cinétique des électrons et fréquence du rayon-
nement

On met en oeuvre le protocole expérimental détaillé partie 1.1.
On obtient ainsi le tableau de mesures suivant (FIGURE 25 disponible page suivante).

On tracera alors les courbes des Vi = f(v) comme le montrent les FIGURES 26, 28 et 29 (on ne
représente que la série 1, les graphes dédiés aux autres séries sont disponibles en annexe).
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Potentiel Vs en Volts (V)

Série1

Longueur d'onde en nm Fréquence en Hz 2eme ordre gauche (V)| ler ordre gauche (V) ler ordre droite (V) | 2eme ordre droite (V)

5.1997E+14 0612 0.619 0.623 0.560
546.07 5.4938E+14 0.707 0.715 0.722 0.583
435.83 6.8834E+14 1.330 1.334 1.336 1.165
365.02 8.2187E+14 1.642 1.850 1.870 1.405
Pente régression (V.s) 3.528E-15 4.138E-15 4.181E-15 2.997E-15
Valeurde h (l.s) 5.652E-34 6.629E-34 6.697E-34 4.801E-34

b (eV) 1.203 1.539 1.558 1.004

Longueur d'onde en nm Fréquence en Hz 2eme ordre gauche (V)| ler ordre gauche (V) ler ordre droite (V) | 2eme ordre droite (V)

5.1997E+14 0.614 0.616 0.623 0.568
546.07 5.4938E+14 0.706 0.714 0.721 0.585
435.83 6.8834E+14 1.246 1.328 1.341 1.210
365.02 8.2187E+14 1.700 1.850 1.870 1.450
Pente régression (V.s) 3.640E-15 4.142E-15 4.186E-15 3.148E-15
Valeur de h (J.s) 5.831E-34 6.635E-34 6.706E-34 5.043E-34

$(eV) 1.281 1.544 1.561 1.077

Longueurd'onde ennm | Longueurd'onde en nm  PETGERCIGTER-E T EY AN I EUGTG IGREE T ER Y] lerordre droite (V) | 2&me ordre droite (V)

5.1997E+14 0.615 0.617 0.623 0.555
546.07 5.4938E+14 0.704 0.714 0.723 0.572
435.83 6.8834E+14 1.247 1.328 1.339 1.119
365.02 8.2187E+14 1.705 1.853 1.870 1.412
Pente régression (V.s) 3.657E-15 4.149E-15 4.181E-15 3.013E-15
Valeur de h (.s) 5.858E-34 6.646E-34 6.698E-34 4.826E-34
o (eV) 1.290 1.548 1.558 1.028

FIGURE 25 — Tableau présentant les mesures de Vs pour chaque raie colorée et aux différents ordres
(on fait également figurer les valeurs de pentes, ordonnées a l'origine et h calculées)
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Série 1: Vs en fonction de la fréquence f

2.000 y=4,181E-15x - 1,5583
1.800 y=4,138E-15x - 1,5392
1.600 y=3,528E-15x - 1,2025
1.400 y=2,997E-15x - 1,0045
» 1.200
S
< 1.000 X 2éme ordre gauche (V)
T>'; 0.800
X ler ordre gauche (V)
0.600
0.400 X ler ordre droite (V)
0.200 X 2&éme ordre droite (V)
0.000
5.0000E+14 6.0000E+14 7.0000E+14 8.0000E+14 9.0000E+14

Fréquence (en Hz)

FIGURE 26 — Graphe de V; = f(v) pour la série 1 (cf plus loin pour la justification des incertitudes
considérées)

Comme représenté FIGURE 26, on modélise également ces données sous la forme de droites (régres-
sions linéaires) dont les coefficients directeurs figurent également FIGURE 25 (on utilise les fonctions
"PENTE" et "ORDONNEE A L’ORIGINE" d’Excel pour obtenir une meilleure précision sur ces va-
leurs : cela évite les calculs & la main avec la méthode des moindres carrés, comme mis en oeuvre dans
la partie I). En effet, on peut alors, comme vu partie 1.2, remonter & la valeur de h. Seul le graphe de
la premiére série de mesures est présent ici, les 2 autres sont disponibles en annexe.

On remarque au passage de trés forts écarts entre les mesures du ler et du second ordre. En parti-
culier, le 2nd ordre droite est trés éloigné du premier ordre et présente une forte dispersion des points
de mesures. Cela peut étre di & plusieurs facteurs : un manque d’illumination, et surtout l’éclairage
ambiant qui venait fortement perturber la mesure (en effet, pour la série de droite, 'orientation fai-
sait que la lumiére provenant d’un autre poste de TP se reflétait fortement dans la zone de mesure :
résultat, on obtient des mesures faussées). Le second ordre gauche est légérement mieux en termes de
dispersion, mais la différence reste minime.

Pour déterminer h, on effectue I’analogie entre I’équation de la droite de modélisation obtenue et
léquation (IT1.4). On pense en revanche a convertir les grandeurs (V; en Volts ou €V vers Joules) de
fagon & obtenir une valeur de h en J.s (soit une multiplication par 1,602.10~°C). On remarque alors
que la pente/coefficient directeur de la droite de modélisation correspond en réalité a la constante de
Planck h. L’ordonnée a l’origine correspond elle & —hyg = —®.

Les valeurs de h et ® ainsi déterminées apparaissent dans le tableau de la FIGURE 25.
On notera alors que les valeurs de h obtenues sont en adéquation avec les remarques faites sur

le second ordre. En effet, on constate que les valeurs de h sont trés erronées ou du moins fortement
éloignées de la valeur théorique pour les séries du second ordre.
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Conclusion de ’Expérience

En ne gardant que le premier ordre (séries les moins perturbées par la lumiére environnante), on
constate que la modélisation est trés précise puisqu’aux incertitudes de mesures prés (cf plus loin pour
leur estimation), toutes les valeurs mesurées interceptent la droite de modélisation. De ce fait, on veéri-
fie expérimentalement 1’équation d’Einstein (équation III.4) et on identifie donc les valeurs de h et ®
correspondantes (pour chaque série; cf FIGURE 25).

La série la plus précise, si 'on se référe a la valeur théoriquement admise de h, est la série 1 avec
le ler ordre gauche. Cette série donne en effet :

h=6,629.1073* J.s
®=1,539 eV

lh—henl _
lhhunl — 0,05 %

Il s’agit donc d’une valeur qui apparait méme extrémement proche de la valeur théorique. En
comparaison, la moyenne de I’ensemble de nos séries de mesures donnerait :

By = 6,002.10734 J.s
Bproy = 1,349 eV

hmoy—he
Bmes—hunl — g 42 9%
th

Enfin, si au vu des sources d’erreurs, on ne considére que ordre 1 (gauche et droite), on obtient :

oy = 6,669.10734 J.s
®poy = 1,551 eV

Rimoy—ht
Mme—hunl 0,65 %
th
On retrouve donc bien le fait que les séries relevées au 2nd ordre introduisent de fortes sources d’er-
reurs. En évitant de les considérer, on obtient une valeur de h trés précise avec moins de 1% d’écart
relatif.

On peut alors signaler que la valeur moyenne de ®, i.e @0, = 1,551 eV = 2,485.10719 .J corres-
pond & I’énergie seuil nécessaire & ’arrachement d’un électron & la surface de la cellule photoélectrique
utilisée pour cette expérience.

La partie suivante détaille I’expérience 2. Les calculs des incertitudes associées a 1’ensemble des
grandeurs sont eux détaillés parties 2.c et 2.d.

b) Expérience 2 : Modéle ondulatoire de la lumiére versus modéle quantique

On va ici appliquer le protocole expérimental détaillé partie 1.1.

Notons qu’au vu des difficultés rencontrées lors de la premiére manipulation, on ne va ici considérer
que le ler ordre gauche. En effet, le 2nd ordre engendrait une trop grande dispersion des mesures et
la partie droite était plus exposée a la lumiére parasite environnante. De 14, le ler ordre gauche était
le plus propice aux mesures.

La mise en oeuvre du protocole expérimental méne a 1’établissement de 3 tableaux, chacun corres-

pondant & 1 longueur d’onde (raie d’émission). La FIGURE 27 présente les mesures associées a la raie
verte. Les tableaux associés aux raies indigo et UV sont disponibles en annexe : FIGURES 30 et 31.
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Couleur % Transmission | Potentiel d'arrét Vs (V) | Durée de la charge (s)
Vert (546,07 nm) 100 0.716 7.03
Vert (546,07 nm) 80 0.711 10.00
Vert (546,07 nm) 60 0.709 9.58
Vert (546,07 nm) 40 0.708 16.26
Vert (546,07 nm) 20 0.696 26.16
Vert (546,07 nm) 100 0.717 7.00
Vert (546,07 nm) 80 0.714 10.49
Vert (546,07 nm) 60 0.705 11.28
Vert (546,07 nm) 40 0.706 19.85
Vert (546,07 nm) 20 0.701 18.01
Vert (546,07 nm) 100 0.714 7.03
Vert (546,07 nm) 80 0.708 8.82
Vert (546,07 nm) 60 0.706 9.89
Vert (546,07 nm) 40 0.705 15.02
Vert (546,07 nm) 20 0.695 17.10

FIGURE 27 — Tableau présentant la valeur du potentiel d’arrét et la durée de charge mesurées pour la
raie verte a différents pourcentages de transmission

Notons qu’au vu de la dispersion des mesures, en particulier concernant la durée de charge, on ne
pourra identifier que des tendances.

On peut ainsi réaliser 3 observations notables :

e Tout d’abord, on remarque que le potentiel d’arrét est globalement constant pour une longueur
d’onde donnée, et ce quel que soit le pourcentage de transmission. On peut donc en déduire
que l'intensité lumineuse n’influence pas le potentiel d’arrét V; et donc que le nombre d’élec-
trons arrachés au semi-conducteur de la cellule photoélectrique par le flux lumineux n’est pas
lié et n’est pas fonction de I'intensité lumineuse. Ceci est en parfaite adéquation avec le modéle
quantique initié par Einstein (effet photoélectrique) qui prévoit que I’énergie cinétique maximale
E% de Iélectron arraché et éjecté reste inchangée lorsque 'on fait varier I'intensité lumineuse.

e Une seconde observation est que pour une longueur d’onde donnée, la durée de charge tend

clairement & augmenter lorsque ’on diminue le pourcentage de transmission. Autrement dit,
la vitesse d’arrachement des électrons est fonction du pourcentage de transmission et donc de
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I'intensité lumineuse. Elle augmente lorsque l'intensité diminue, i.e la vitesse d’arrachement est
une fonction décroissante de l'intensité lumineuse. Cela n’est cependant pas en contradiction
avec le modéle quantique d’Einstein. Au contraire, cette observation correspond méme tout a
fait avec un modéle corpusculaire. On peut en effet faire 'analogie du rocher et du sable : i.e on
peut faire tomber une tonne de sable trés progressivement sur sa téte, mais certainement pas
une pierre d’une tonne directement. Pourtant, il s’agit bien de la méme masse, mais seulement,
elle est "transmise" (y voir ’analogie avec ’énergie et donc le potentiel d’arrét V) sur une durée
plus importante (la durée de charge du condensateur).

e Une autre remarque concerne les différences de potentiels d’arréts et des durées de charge pour
différentes longueurs d’ondes & un pourcentage de transmission donné. En effet, on constate
expérimentalement que pour un pourcentage de transmission donné, (i.e pour une intensité
lumineuse fixée), plus la longueur d’onde diminue, (i.e plus la fréquence augmente), plus le po-
tentiel d’arrét et la durée de charge augmentent. Pour le potentiel d’arrét, cela est parfaitement
en adéquation avec le modéle quantique (cf partie 2.a) puisqu’une augmentation de fréquence
induit une augmentation de 1'énergie du quantum d’énergie (i.e du photon). Pour la durée de
charge, cela signifie que les hautes fréquences induisent un régime transitoire plus important
(plus long) pour la charge du condensateur (cela est pour le coup lié au condensateur électrique
et donc au circuit présent dans le dispositif photoélectrique).

En réalité, il y a une quatriéme observation a réaliser. Effectivement, on a précédemment énoncé
que le potentiel d’arrét était globalement constant pour une longueur d’onde donnée. Il se trouve que
cette observation est approchée puisque ’on constate en réalité une légére diminution de V; lorsque que
I’on diminue le pourcentage de transmission. Dit autrement, une diminution de 'intensité lumineuse
induit une légére diminution du potentiel d’arrét V. Cela semble donc suspect puisqu’en contradiction
avec le modéle proposé par Einstein.

Dans les faits, non, il ne s’agit probablement pas d’une contradiction, mais plutdt de la manifesta-
tion d’un effet trés connu et trés important de la physique quantique, le fameux effet tunnel. Cet effet
fort contre-intuitif ne peut étre décrit qu’en théorie quantique (parfaitement impossible en physique
classique). Il correspond a la propriété que posséde chaque objet quantique de franchir une barriére de
potentiel alors que son énergie est en réalité inférieure a ’énergie seuil (minimale donc) nécessaire pour
franchir cette barriére. Physiquement, en s’imaginant objet quantique, on est en train de dire que 'on
peut traverser les murs (on identifie alors mieux le paradoxe qui se poserait en physique classique). Cet
effet existe pourtant bien et il résulte du caractére probabiliste et donc non-déterministe de la physique
quantique. Attention, ce caractére/cet effet certes probabiliste est bien vérifié dans la réalité! Penser
que 'effet tunnel est une erreur engendrée par cet aspect probabiliste (et donc soit-disant "incertain")
est justement une erreur !

D’ailleurs, on vient sans s’en rendre compte de le constater expérimentalement dans notre ma-
nipulation. Ici, nos objets quantiques sont nos électrons qui vont passer la barriére de potentiel du
condensateur sans pourtant avoir 1’énergie requise pour la franchir en théorie. Cela résulte sur nos
mesures en ces légéres variations du potentiel d’arrét V.

Notons cependant que 'effet tunnel est généralement plus significatif dans des contextes impliquant
des barriéres potentielles plus élevées et des particules avec une énergie cinétique plus faible. Dans le
cas de leffet photoélectrique, ot les énergies typiques des électrons émis sont relativement élevées,
Peffet tunnel peut avoir une influence minime sur le potentiel d’arrét (Ieffet est donc trés faible ici,
d’ou de trés faibles variations de V).

Enfin, cette expérience ne doit pas nous laisser penser que le modéle ondulatoire est & jeter ! En effet,
toutes ces observations se sont justifiées par un modéle corpusculaire (quantique), mais il existe bien
un phénomeéne qui ne se décrit que dans le cadre du modéle ondulatoire. Rappelons que 'on utilisait
un réseau de diffraction pour diffracter la lumiére de facon & ce que 1'on obtienne séparément toutes
nos raies d’émission (de la lampe au mercure). Eh bien il se trouve que le phénomeéne de diffraction ne
peut étre décrit (a I’heure actuelle) que par le modeéle ondulatoire. On vient donc de mettre en évidence
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que la lumiére ne peut étre décrite par un modéle unique (corpusculaire ou ondulatoire). Ces 2 modéles
sont nécessaires pour décrire complétement la lumiére, c’est ce qu’on appelle la dualité onde-corpuscule.

Notons d’ailleurs qu’il s’agit 1a d’un sujet extrémement important de la physique contemporaine.
Effectivement, beaucoup de physiciens dont le grand Stephen Hawking malheureusement décédé en
2018 ont concentré et concentrent encore leurs travaux sur la recherche d’une théorie unique, la fameuse
théorie du tout ou "Theory of Everything" qui unifierait hypothétiquement ’ensemble des régles de
la physique moderne, en conciliant notamment les lois de 'infiniment grand avec celles de I'infiniment
petit (physique quantique). Méme si la dualité onde-corpuscule n’est pas nécessairement au centre de
cette théorie, elle pourrait changer de visage si une telle découverte était réalisée.

c) Estimations des incertitudes de mesures

1) Sources d’incertitude sur V;

On considére la précision du multimétre, soit une précision au 3 éme digit, i.e & 0,001 V pres. De
la, on se doit & minima de considérer une incertitude de cet ordre de grandeur.

Cependant, lors des mesures, on a pu constater des oscillations de la valeur de tension affichée. Dans
les pires cas, c’est le second digit qui changeait (lorsqu’on approchait du régime permanent). Au vu des
variations constatées le jour de la manipulation, on s’est arrété sur une valeur de AVy = £ 0,030 V.

2) Sources d’incertitude sur v

La valeur d’incertitude sur la fréquence v ne peut étre établie qu’a partir des valeurs numériques
fournies pour la réalisation de la manipulation. De ce fait, comme elles ont été données sous forme
de longueurs d’ondes avec 2 digits, on doit aussi considérer une valeur approchée de la vitesse de la
lumiére c :

c
== II1.5
YT ( )

La différentielle logarithmique méne de fagon immédiate & (cas le plus défavorable comme d’habi-
tude) :

Av _ Ac AN

av._ac, AA (I11.6)
| el Al

Au vu de la précision des données numériques considérées, on établit :

¢=3,0.108 m.s~!
Ac==+0,1.108 m.s!
AN =+ 0,01 nm

Notons que pour chaque valeur de A, on obtient une valeur d’incertitude relative identique lorsque
I’on respecte le nombre de chiffres significatifs. On considérera donc la méme valeur d’incertitude re-
lative pour toutes les valeurs de A (en réalité, cette incertitude relative s’avére négligeable devant celle
sur c).

De 1a, on obtient pour chaque raie colorée (pour chaque fréquence v donc) :

AVjgune = 1,733.10'3 Hz
Avyers = 1,832.1013 Hz
AVindigo = 2,295.10'3 H2
Avyy = 2,740.10% Hz

Autrement dit, on a une incertitude relative sur v de 3, 33%.
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2) Sources d’incertitude sur ¢

L’incertitude sur ¢ est en réalité assez subjective, car elle correspond a l'incertitude du chronomé-
trage du temps de charge du condensateur qui se retranscrit sur nos mesures de V. Il s’agit donc plutot
d’une source d’erreur supplémentaire sur V.

En réalité, il faudrait donc aussi considérer une incertitude supplémentaire sur V; (uniquement pour
Pexpérience 2). Mais cela va de toute fagon étre inutile ici puisqu’elle serait absolument gigantesque
au vu des difficultés rencontrées pour cette mesure (durée de charge). En effet, la valeur de V; ne se
stabilisait pas vraiment, elle continuait en réalité & osciller, certes trés légérement, mais pendant des
durées absolument substantielles parfois bien plus élevées que les valeurs réellement considérées comme
temps de charge. De 1a, considérer ces incertitudes ménerait & des valeurs d’incertitudes relatives de
plus de 100%. Les mesures n’auraient donc plus aucun intérét physique. Effectivement, rappelons que
la seconde expérience visait a identifier des tendances d’évolution des grandeurs et non des valeurs
numériques précises. Les incertitudes de mesures n’apporteront donc rien ici puisque qu’aucune valeur
numérique n’est isolément considérée, mesurée ou utilisée pour un calcul quelconque.

d) Calcul des incertitudes sur h et ®
Estimons maintenant la propagation d’erreur de fagon a calculer I'incertitude sur h et ®.

On commence par rappeler que ® est notre ordonnée & l'origine et h notre coeflicient directeur dans
notre droite de régression.

De 1a, on peut soit utiliser un logiciel comme LatisPro pour estimer les incertitudes sur ces para-
meétres de modélisation, ou alors les estimer & la main de fagon approchée (comme nous n’avons cette
fois-ci pas utilisé LatisPro pour I’établissement des modélisations, c’est cette méthode manuelle que
Pon utilisera).

En considérant une incertitude sur ® similaire & celle considérée sur les valeurs de ’axe des ordon-
nées, a savoir sur Vj, on obtient :

| A =:+0,030 V =+ 0,030 eV = + 0,048.10 1 J|

Soit avec la valeur moyenne de ® précédemment déterminée (cf partie 2.a), une incertitude relative
de :

AD
= =1,94%
|®|

Pour le coefficient directeur h, on I'estime, en revenant & sa définition, comme rapport de valeurs
d’ordonnées sur valeurs d’abscisses (en procédant comme cela, on va obtenir une valeur majorée de
lincertitude de mesure sur k). Ainsi, on considére l'incertitude d'un rapport de valeurs dont on connait
les incertitudes respectives. La différentielle logarithmique donne alors de fagon immeédiate (notons une
seconde majoration de l'incertitude calculée puisque 1'on se place dans le cas le plus défavorable ou
toutes les erreurs s’ajoutent sans d’éventuelles compensations) :

AL Av AV,
Ihl vl |V

(ITL.7)

On obtient ainsi U'incertitude relative sur h (on prend la valeur moyenne de V; pour le calcul :
notons qu’au vu de toutes les majorations d’incertitudes réalisées ici, considérer la moyenne ne va pas
tant introduire d’écart et permettra I'obtention d’une valeur surévaluée de l'incertitude sur h) :

Ah

(A noter qu’on aurait encore pu davantage surévaluer cette incertitude en considérant la valeur
minimale de V; au lieu de la valeur moyenne).
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Finalement, on obtient avec la valeur moyenne de h précédemment déterminée (cf partie 2.a) :

| AL =0,410.10%" s

A titre de comparaison, une modélisation sur LatisPro et donc une estimation d’incertitude par ce
logiciel était £0,2.1073% J.s (on constate bien une surestimation de I'incertitude dans le cas précédent,
i.e calcul manuel).

e) Conclusion de l’exploitation des données
On a donc pu déterminer de facon expérimentale la constante de Planck ainsi que le travail de sortie
de la cellule photoélectrique (ou plutdt du matériau la composant) avec une précision correcte :
hewp = (6,629 £ 0,410) - 1073* J.s
®cpp =1,551 + 0,030 eV
Dans un second temps, nous avons pu constater 'importance du principe de dualité onde-corpuscule,

tout en mettant en évidence la validité expérimentale du modéle quantique d’Einstein (effet photoélec-
trique). On a aussi pu noter et vérifier plusieurs aspects de cette théorie, & savoir :

- le fait que l'intensité lumineuse n’influe pas sur I’énergie cinétique maximale de I’électron arraché
lors de l’effet photoélectrique ;

- le fait que la vitesse d’arrachement des électrons est fonction de l'intensité lumineuse ;

- le fait que les hautes fréquences correspondent a une plus haute énergie (en termes de quanta)
que les basses fréquences (F = hv).

3 Remarques et Observations sur la Manipulation

Nous allons ici réaliser une série de remarques, observations et compléments concernant la mani-
pulation mise en oeuvre.

e Commengons par noter que les deux manipulations mises en oeuvres étaient trés sensibles a la
lumiére ambiante. Cette derniére venait en effet perturber nos mesures et cela s’est ressenti en
partie 2.a lors du calcul de h (cf écarts sur h FIGURE 25). Il serait donc bon de réaliser cette
expérience dans une piéce parfaitement sombre (sans autres sources lumineuses dans la salle)
de fagon & améliorer nos résultats (rappelons qu’on avait été contraint de ne plus considérer nos
mesures a droite, car trop exposées a la lumiére environnante).

e De plus, lors de la seconde expérience, les variations/oscillations de la valeur de tension affi-
chée par le multimétre rendaient la mesure du temps de charge du condensateur relativement
arbitraire (il s’agissait plus d’une estimation que d’une mesure). De ce fait, il est important
de signifier qu’aucune mesure précise n’est a retenir ici (les incertitudes seraient littéralement
gigantesques), seules les tendances constatées et observées sont exploitables.
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4 Annexe

Série 2 : Vs en fonction de la fréquence f

2.000 y =4,186E-15x - 1,5608
1.800 y=4,142E-15x - 1,5440
1.600 y = 3,640E-15x - 1.2807
y =3,148E-15x - 1,0766
1.400
@ 1.200
S 1.000
s - X 2&me ordre gauche (V)
E 0.800
x 1er ordre gauche (V)
0.600
0.400 X lerordre droite (V)
0.200 X 2&me ordre droite (V)
0.000
5.0000E+14 6.0000E+14 7.0000E+14 8.0000E+14 9.0000E+14
Fréquence (en Hz)
FIGURE 28 — Graphe de V; = f(v) pour la série 2
Série 3 : Vs en fonction de la fréquence f
2:000 y=4,181E-15x - 1,5577
1.800 y =4,149E-15x - 1,5476
1.600 y = 3,657E'15X - 1,2905
L2400 y = 3,013E-15x - 1,0284
@ 1.200
S
S 1.000 X 2eme ordre gauche (V)
E 0.800
X 1er ordre gauche (V)
0.600
0.400 X ler ordre droite (V)
0.200 X 2&éme ordre droite (V)
0.000
5.0000E+14 6.0000E+14 7.0000E+14 8.0000E+14 9.0000E+14

Fréquence (en Hz)

FIGURE 29 — Graphe de Vi = f(v) pour la série 3
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Couleur % Transmission Potentiel d'arrét Vs (V) | Durée de la charge (s)
Indigo (435,83 nm) 100 1.326 8.28
Indigo (435,83 nm) 80 1.318 12.63
Indigo (435,83 nm) 60 1.316 13.50
Indigo (435,83 nm) 40 1.310 21.22
Indigo (435,83 nm) 20 1.285 21.22
Indigo (435,83 nm) 100 1.325 9.33
Indigo (435,83 nm) 80 1.318 13.01
Indigo (435,83 nm) 60 1.312 13.95
Indigo (435,83 nm) 40 1.307 17.08
Indigo (435,83 nm) 20 1.286 20.65
Indigo (435,83 nm) 100 1.320 10.63
Indigo (435,83 nm) 80 1.316 10.75
Indigo (435,83 nm) 60 1.306 11.01
Indigo (435,83 nm) 40 1.300 15.33
Indigo (435,83 nm) 20 1.287 24.00

FI1GURE 30 — Tableau présentant la valeur du potentiel d’arrét et la durée de charge mesurées pour la
raie indigo a différents pourcentages de transmisison
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Couleur % Transmission Potentiel d'arrét Vs (V) | Durée de la charge (s)
UV (365,02 nm) 100 1.850 17.00
UV (365,02 nm) 80 1.831 40.00
UV (365,02 nm) 60 1.820 47.00
UV (365,02 nm) 40 1.795 60.00
UV (365,02 nm) 20 1.706 73.00
UV (365,02 nm) 100 1.850 17.53
UV (365,02 nm) 80 1.826 30.63
UV (365,02 nm) 60 1.815 40.58
UV (365,02 nm) 40 1.779 37.59
UV (365,02 nm) 20 1.703 57.96
UV (365,02 nm) 100 1.850 19.00
UV (365,02 nm) 80 1.825 30.00
UV (365,02 nm) 60 1.810 32.50
UV (365,02 nm) 40 1.790 64.00
UV (365,02 nm) 20 1.700 54.00

FIGURE 31 — Tableau présentant la valeur du potentiel d’arrét et la durée de charge mesurées pour la
raie UV a différents pourcentages de transmisison
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Conclusion

Ce rapport rend ainsi compte des conclusions, mais aussi des observations et remarques relatives a
ces 3 travaux pratiques.

On a donc pu, au travers de ces manipulations, établir ou plutét vérifier les valeurs des dites
constantes fondamentales de la physique, aujourd’hui établies avec une bien meilleure précision cepen-
dant. Rappelons alors nos résultats :

c= (3,09 + 0,06)-10® m.s~!
G = (6,471 4+0,404) - 10~ m3.kg=t.s72
h= (6,629 + 0,410) 103 J.s

En comparaison aux valeurs aujourd’hui admises :

e = 299 792 458 m.s~!
Gy =6,6742 - 1071 m3. kg1 572
hen = 6,6260693 - 10734 J.s

Ce rapport a également permis de noter les limites des expériences mises en oeuvres pour la dé-
termination de ces constantes, avec un regard tout particulier porté sur la justification et I’étude des
incertitudes de mesures.

A cette occasion, diverses propositions et voies d’améliorations propres & chaque partie ont été
proposées et développées.

Par ailleurs, au-dela de la détermination de ces constantes et de la découverte des méthodes his-
toriques ayant permis leur détermination, ces expériences nous ont permis d’identifier I'importance de
ces constantes dans le monde de la physique.

La constante de Planck h occupe en effet une place de premier plan en physique et en mécanique
quantique, puisqu’elle représente/caractérise le lien entre la fréquence d’un rayonnement et I’énergie
d’un photon le composant. Autrement dit, cette constante établit le lien entre les propriétés décrites
dans le cadre du modéle corpusculaire et celles décrites par le modéle ondulatoire. Bien qu’établie
initialement par Einstein dans le cadre de son étude de l'effet photoélectrique, cette constante est
aujourd’hui essentielle a la compréhension du concept de dualité onde-corpuscule.

De la méme fagon, la constante de célérité c ou vitesse de la lumiére dans le vide est elle essentielle
dans les théories de relativité restreinte et relativité générale. Outre le fait qu’elle serve aussi de valeur
de référence dans différentes branches de la physique, elle a notamment permis de redéfinir le métre a
l’occasion d’un accord international survenu en 1983.

Enfin, la constante de gravitation G est elle d’'une importance capitale dans le monde de 'infini-
ment grand et plus particuliérement en relativité générale. Elle est donc extrémement importante en
astrophysique et en astronomie classique. Effectivement, elle permet, comme vu précédemment avec le
Soleil, de calculer a I'aide de la troisiéme loi de Kepler, la masse d’un astre autour duquel gravite une
planéte (cf partie associée).
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